Do you want to publish a course? Click here

LyST: a Scalar-Tensor Theory of Gravity on Lyra Manifold

87   0   0.0 ( 0 )
 Added by Eduardo De Morais
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a scalar-tensor theory of gravity on a torsion-free and metric compatible Lyra manifold. This is obtained by generalizing the concept of physical reference frame by considering a scale function defined over the manifold. The choice of a specific frame induces a local base, naturally non-holonomic, whose structure constants give rise to extra terms in the expression of the connection coefficients and in the expression for the covariant derivative. In the Lyra manifold, transformations between reference frames involving both coordinates and scale change the transformation law of tensor fields, when compared to those of the Riemann manifold. From a direct generalization of the Einstein-Hilbert minimal action coupled with a matter term, it was possible to build a Lyra invariant action, which gives rise to the associated Lyra Scalar-Tensor theory of gravity (LyST), with field equations for $g_{mu u}$ and $phi$. These equations have a well-defined Newtonian limit, from which it can be seen that both metric and scale play a role in the description gravitational interaction. We present a spherically symmetric solution for the LyST gravity field equations. It dependent on two parameters $m$ and $r_{L}$, whose physical meaning is carefully investigated. We highlight the properties of LyST spherically symmetric line element and compare it to Schwarzchild solution.



rate research

Read More

110 - Yungui Gong , Shaoqi Hou 2017
The detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory opens a new era to use gravitational waves to test alternative theories of gravity. We investigate the polarizations of gravitational waves in $f(R)$ gravity and Horndeski theory, both containing scalar modes. These theories predict that in addition to the familiar $+$ and $times$ polarizations, there are transverse breathing and longitudinal polarizations excited by the massive scalar mode and the new polarization is a single mixed state. It would be very difficult to detect the longitudinal polarization by interferometers, while pulsar timing array may be the better tool to detect the longitudinal polarization.
We discuss the coupling of the electromagnetic field with a curved and torsioned Lyra manifold using the Duffin-Kemmer-Petiau theory. We will show how to obtain the equations of motion and energy-momentum and spin density tensors by means of the Schwinger Variational Principle.
We analyze the propagation of high-frequency gravitational waves (GW) in scalar-tensor theories of gravity, with the aim of examining properties of cosmological distances as inferred from GW measurements. By using symmetry principles, we first determine the most general structure of the GW linearized equations and of the GW energy momentum tensor, assuming that GW move with the speed of light. Modified gravity effects are encoded in a small number of parameters, and we study the conditions for ensuring graviton number conservation in our covariant set-up. We then apply our general findings to the case of GW propagating through a perturbed cosmological space-time, deriving the expressions for the GW luminosity distance $d_L^{({rm GW})}$ and the GW angular distance $d_A^{({rm GW})}$. We prove for the first time the validity of Etherington reciprocity law $d_L^{({rm GW})},=,(1+z)^2,d_A^{({rm GW})}$ for a perturbed universe within a scalar-tensor framework. We find that besides the GW luminosity distance, also the GW angular distance can be modified with respect to General Relativity. We discuss implications of this result for gravitational lensing, focussing on time-delays of lensed GW and lensed photons emitted simultaneously during a multimessenger event. We explicitly show how modified gravity effects compensate between different coefficients in the GW time-delay formula: lensed GW arrive at the same time as their lensed electromagnetic counterparts, in agreement with causality constraints.
192 - Dario Bettoni 2016
The direct detection of gravitational waves (GWs) is an invaluable new tool to probe gravity and the nature of cosmic acceleration. A large class of scalar-tensor theories predict that GWs propagate with velocity different than the speed of light, a difference that can be $mathcal{O}(1)$ for many models of dark energy. We determine the conditions behind the anomalous GW speed, namely that the scalar field spontaneously breaks Lorentz invariance and couples to the metric perturbations via the Weyl tensor. If these conditions are realized in nature, the delay between GW and electromagnetic (EM) signals from distant events will run beyond human timescales, making it impossible to measure the speed of GWs using neutron star mergers or other violent events. We present a robust strategy to exclude or confirm an anomalous speed of GWs using eclipsing binary systems, whose EM phase can be exquisitely determined. he white dwarf binary J0651+2844 is a known example of such system that can be used to probe deviations in the GW speed as small as $c_g/c-1gtrsim 2cdot 10^{-12}$ when LISA comes online. This test will either eliminate many contender models for cosmic acceleration or wreck a fundamental pillar of general relativity.
Kinetic mixing between the metric and scalar degrees of freedom is an essential ingredient in contemporary scalar-tensor theories. This often makes hard to understand their physical content, especially when derivative mixing is present, as it is the case for Horndeski action. In this work we develop a method that allows to write a Ricci curvature-free scalar field equation and discuss some of the advantages of such rephrasing in the study of stability issues in the presence of matter, the existence of an Einstein frame and the generalization of the disformal screening mechanism. For quartic Horndeski theories, such procedure leaves, in general, a residual coupling to curvature, given by the Weyl tensor. This gives rise to a binary classification of scalar-tensor theories into stirred theories, for which the curvature can be substituted for, and shaken theories for which a residual coupling to curvature remains. Quite remarkably, we have found that generalized DBI Galileons belong to the first class. Finally, we discuss kinetic mixing in quintic theories for which non-linear mixing terms appears and in the recently proposed theories beyond Horndeski which display a novel form of kinetic mixing, in which the field equation is sourced by derivatives of the energy-momentum tensor.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا