No Arabic abstract
We analyze the propagation of high-frequency gravitational waves (GW) in scalar-tensor theories of gravity, with the aim of examining properties of cosmological distances as inferred from GW measurements. By using symmetry principles, we first determine the most general structure of the GW linearized equations and of the GW energy momentum tensor, assuming that GW move with the speed of light. Modified gravity effects are encoded in a small number of parameters, and we study the conditions for ensuring graviton number conservation in our covariant set-up. We then apply our general findings to the case of GW propagating through a perturbed cosmological space-time, deriving the expressions for the GW luminosity distance $d_L^{({rm GW})}$ and the GW angular distance $d_A^{({rm GW})}$. We prove for the first time the validity of Etherington reciprocity law $d_L^{({rm GW})},=,(1+z)^2,d_A^{({rm GW})}$ for a perturbed universe within a scalar-tensor framework. We find that besides the GW luminosity distance, also the GW angular distance can be modified with respect to General Relativity. We discuss implications of this result for gravitational lensing, focussing on time-delays of lensed GW and lensed photons emitted simultaneously during a multimessenger event. We explicitly show how modified gravity effects compensate between different coefficients in the GW time-delay formula: lensed GW arrive at the same time as their lensed electromagnetic counterparts, in agreement with causality constraints.
We investigate the cosmological applications of new gravitational scalar-tensor theories, which are novel modifications of gravity possessing 2+2 propagating degrees of freedom, arising from a Lagrangian that includes the Ricci scalar and its first and second derivatives. Extracting the field equations we obtain an effective dark energy sector that consists of both extra scalar degrees of freedom, and we determine various observables. We analyze two specific models and we obtain a cosmological behavior in agreement with observations, i.e. transition from matter to dark energy era, with the onset of cosmic acceleration. Additionally, for a particular range of the model parameters, the equation-of-state parameter of the effective dark energy sector can exhibit the phantom-divide crossing. These features reveal the capabilities of these theories, since they arise solely from the novel, higher-derivative terms.
The detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory opens a new era to use gravitational waves to test alternative theories of gravity. We investigate the polarizations of gravitational waves in $f(R)$ gravity and Horndeski theory, both containing scalar modes. These theories predict that in addition to the familiar $+$ and $times$ polarizations, there are transverse breathing and longitudinal polarizations excited by the massive scalar mode and the new polarization is a single mixed state. It would be very difficult to detect the longitudinal polarization by interferometers, while pulsar timing array may be the better tool to detect the longitudinal polarization.
The detection of gravitational waves (GWs) propagating through cosmic structures can provide invaluable information on the geometry and content of our Universe, as well as on the fundamental theory of gravity. In order to test possible departures from General Relativity, it is essential to analyse, in a modified gravity setting, how GWs propagate through a perturbed cosmological space-time. Working within the framework of geometrical optics, we develop tools to address this topic for a broad class of scalar-tensor theories, including scenarios with non-minimal, derivative couplings between scalar and tensor modes. We determine the corresponding evolution equations for the GW amplitude and polarization tensor. The former satisfies a generalised evolution equation that includes possible effects due to a variation of the effective Planck scale; the latter can fail to be parallely transported along GW geodesics unless certain conditions are satisfied. We apply our general formulas to specific scalar-tensor theories with unit tensor speed, and then focus on GW propagation on a perturbed space-time. We determine corrections to standard formulas for the GW luminosity distance and for the evolution of the polarization tensor, which depend both on modified gravity and on the effects of cosmological perturbations. Our results can constitute a starting point to disentangle among degeneracies from different sectors that can influence GW propagation through cosmological space-times.
Kinetic mixing between the metric and scalar degrees of freedom is an essential ingredient in contemporary scalar-tensor theories. This often makes hard to understand their physical content, especially when derivative mixing is present, as it is the case for Horndeski action. In this work we develop a method that allows to write a Ricci curvature-free scalar field equation and discuss some of the advantages of such rephrasing in the study of stability issues in the presence of matter, the existence of an Einstein frame and the generalization of the disformal screening mechanism. For quartic Horndeski theories, such procedure leaves, in general, a residual coupling to curvature, given by the Weyl tensor. This gives rise to a binary classification of scalar-tensor theories into stirred theories, for which the curvature can be substituted for, and shaken theories for which a residual coupling to curvature remains. Quite remarkably, we have found that generalized DBI Galileons belong to the first class. Finally, we discuss kinetic mixing in quintic theories for which non-linear mixing terms appears and in the recently proposed theories beyond Horndeski which display a novel form of kinetic mixing, in which the field equation is sourced by derivatives of the energy-momentum tensor.
We study the bounce and cyclicity realization in the framework of new gravitational scalar-tensor theories. In these theories the Lagrangian contains the Ricci scalar and its first and second derivatives, in a specific combination that makes them free of ghosts, and transformed into the Einstein frame they are proved to be a subclass of bi-scalar extensions of general relativity. We present analytical expressions for the bounce requirements, and we examine the necessary qualitative behavior of the involved functions that can give rise to a given scale factor. Having in mind these qualitative forms, we reverse the procedure and we construct suitable simple Lagrangian functions that can give rise to a bounce or cyclic scale factor.