Do you want to publish a course? Click here

Multi-Step Reasoning Over Unstructured Text with Beam Dense Retrieval

122   0   0.0 ( 0 )
 Added by Chen Zhao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Complex question answering often requires finding a reasoning chain that consists of multiple evidence pieces. Current approaches incorporate the strengths of structured knowledge and unstructured text, assuming text corpora is semi-structured. Building on dense retrieval methods, we propose a new multi-step retrieval approach (BeamDR) that iteratively forms an evidence chain through beam search in dense representations. When evaluated on multi-hop question answering, BeamDR is competitive to state-of-the-art systems, without using any semi-structured information. Through query composition in dense space, BeamDR captures the implicit relationships between evidence in the reasoning chain. The code is available at https://github.com/ henryzhao5852/BeamDR.



rate research

Read More

Dual encoders perform retrieval by encoding documents and queries into dense lowdimensional vectors, scoring each document by its inner product with the query. We investigate the capacity of this architecture relative to sparse bag-of-words models and attentional neural networks. Using both theoretical and empirical analysis, we establish connections between the encoding dimension, the margin between gold and lower-ranked documents, and the document length, suggesting limitations in the capacity of fixed-length encodings to support precise retrieval of long documents. Building on these insights, we propose a simple neural model that combines the efficiency of dual encoders with some of the expressiveness of more costly attentional architectures, and explore sparse-dense hybrids to capitalize on the precision of sparse retrieval. These models outperform strong alternatives in large-scale retrieval.
Recent advances in open-domain QA have led to strong models based on dense retrieval, but only focused on retrieving textual passages. In this work, we tackle open-domain QA over tables for the first time, and show that retrieval can be improved by a retriever designed to handle tabular context. We present an effective pre-training procedure for our retriever and improve retrieval quality with mined hard negatives. As relevant datasets are missing, we extract a subset of Natural Questions (Kwiatkowski et al., 2019) into a Table QA dataset. We find that our retriever improves retrieval results from 72.0 to 81.1 recall@10 and end-to-end QA results from 33.8 to 37.7 exact match, over a BERT based retriever.
We introduce WIQA, the first large-scale dataset of What if... questions over procedural text. WIQA contains three parts: a collection of paragraphs each describing a process, e.g., beach erosion; a set of crowdsourced influence graphs for each paragraph, describing how one change affects another; and a large (40k) collection of What if...? multiple-choice questions derived from the graphs. For example, given a paragraph about beach erosion, would stormy weather result in more or less erosion (or have no effect)? The task is to answer the questions, given their associated paragraph. WIQA contains three kinds of questions: perturbations to steps mentioned in the paragraph; external (out-of-paragraph) perturbations requiring commonsense knowledge; and irrelevant (no effect) perturbations. We find that state-of-the-art models achieve 73.8% accuracy, well below the human performance of 96.3%. We analyze the challenges, in particular tracking chains of influences, and present the dataset as an open challenge to the community.
Long text generation is an important but challenging task.The main problem lies in learning sentence-level semantic dependencies which traditional generative models often suffer from. To address this problem, we propose a Multi-hop Reasoning Generation (MRG) approach that incorporates multi-hop reasoning over a knowledge graph to learn semantic dependencies among sentences. MRG consists of twoparts, a graph-based multi-hop reasoning module and a path-aware sentence realization module. The reasoning module is responsible for searching skeleton paths from a knowledge graph to imitate the imagination process in the human writing for semantic transfer. Based on the inferred paths, the sentence realization module then generates a complete sentence. Unlike previous black-box models, MRG explicitly infers the skeleton path, which provides explanatory views tounderstand how the proposed model works. We conduct experiments on three representative tasks, including story generation, review generation, and product description generation. Automatic and manual evaluation show that our proposed method can generate more informative and coherentlong text than strong baselines, such as pre-trained models(e.g. GPT-2) and knowledge-enhanced models.
117 - Peng Shi , Rui Zhang , He Bai 2021
Dense retrieval has shown great success in passage ranking in English. However, its effectiveness in document retrieval for non-English languages remains unexplored due to the limitation in training resources. In this work, we explore different transfer techniques for document ranking from English annotations to multiple non-English languages. Our experiments on the test collections in six languages (Chinese, Arabic, French, Hindi, Bengali, Spanish) from diverse language families reveal that zero-shot model-based transfer using mBERT improves the search quality in non-English mono-lingual retrieval. Also, we find that weakly-supervised target language transfer yields competitive performances against the generation-based target language transfer that requires external translators and query generators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا