No Arabic abstract
Long text generation is an important but challenging task.The main problem lies in learning sentence-level semantic dependencies which traditional generative models often suffer from. To address this problem, we propose a Multi-hop Reasoning Generation (MRG) approach that incorporates multi-hop reasoning over a knowledge graph to learn semantic dependencies among sentences. MRG consists of twoparts, a graph-based multi-hop reasoning module and a path-aware sentence realization module. The reasoning module is responsible for searching skeleton paths from a knowledge graph to imitate the imagination process in the human writing for semantic transfer. Based on the inferred paths, the sentence realization module then generates a complete sentence. Unlike previous black-box models, MRG explicitly infers the skeleton path, which provides explanatory views tounderstand how the proposed model works. We conduct experiments on three representative tasks, including story generation, review generation, and product description generation. Automatic and manual evaluation show that our proposed method can generate more informative and coherentlong text than strong baselines, such as pre-trained models(e.g. GPT-2) and knowledge-enhanced models.
Despite the success of generative pre-trained language models on a series of text generation tasks, they still suffer in cases where reasoning over underlying commonsense knowledge is required during generation. Existing approaches that integrate commonsense knowledge into generative pre-trained language models simply transfer relational knowledge by post-training on individual knowledge triples while ignoring rich connections within the knowledge graph. We argue that exploiting both the structural and semantic information of the knowledge graph facilitates commonsense-aware text generation. In this paper, we propose Generation with Multi-Hop Reasoning Flow (GRF) that enables pre-trained models with dynamic multi-hop reasoning on multi-relational paths extracted from the external commonsense knowledge graph. We empirically show that our model outperforms existing baselines on three text generation tasks that require reasoning over commonsense knowledge. We also demonstrate the effectiveness of the dynamic multi-hop reasoning module with reasoning paths inferred by the model that provide rationale to the generation.
Graph convolutional network (GCN) has become popular in various natural language processing (NLP) tasks with its superiority in long-term and non-consecutive word interactions. However, existing single-hop graph reasoning in GCN may miss some important non-consecutive dependencies. In this study, we define the spectral graph convolutional network with the high-order dynamic Chebyshev approximation (HDGCN), which augments the multi-hop graph reasoning by fusing messages aggregated from direct and long-term dependencies into one convolutional layer. To alleviate the over-smoothing in high-order Chebyshev approximation, a multi-vote-based cross-attention (MVCAttn) with linear computation complexity is also proposed. The empirical results on four transductive and inductive NLP tasks and the ablation study verify the efficacy of the proposed model. Our source code is available at https://github.com/MathIsAll/HDGCN-pytorch.
Multi-hop Question Generation (QG) aims to generate answer-related questions by aggregating and reasoning over multiple scattered evidence from different paragraphs. It is a more challenging yet under-explored task compared to conventional single-hop QG, where the questions are generated from the sentence containing the answer or nearby sentences in the same paragraph without complex reasoning. To address the additional challenges in multi-hop QG, we propose Multi-Hop Encoding Fusion Network for Question Generation (MulQG), which does context encoding in multiple hops with Graph Convolutional Network and encoding fusion via an Encoder Reasoning Gate. To the best of our knowledge, we are the first to tackle the challenge of multi-hop reasoning over paragraphs without any sentence-level information. Empirical results on HotpotQA dataset demonstrate the effectiveness of our method, in comparison with baselines on automatic evaluation metrics. Moreover, from the human evaluation, our proposed model is able to generate fluent questions with high completeness and outperforms the strongest baseline by 20.8% in the multi-hop evaluation. The code is publicly available at https://github.com/HLTCHKUST/MulQG}{https://github.com/HLTCHKUST/MulQG .
Knowledge retrieval and reasoning are two key stages in multi-hop question answering (QA) at web scale. Existing approaches suffer from low confidence when retrieving evidence facts to fill the knowledge gap and lack transparent reasoning process. In this paper, we propose a new framework to exploit more valid facts while obtaining explainability for multi-hop QA by dynamically constructing a semantic graph and reasoning over it. We employ Abstract Meaning Representation (AMR) as semantic graph representation. Our framework contains three new ideas: (a) {tt AMR-SG}, an AMR-based Semantic Graph, constructed by candidate fact AMRs to uncover any hop relations among question, answer and multiple facts. (b) A novel path-based fact analytics approach exploiting {tt AMR-SG} to extract active facts from a large fact pool to answer questions. (c) A fact-level relation modeling leveraging graph convolution network (GCN) to guide the reasoning process. Results on two scientific multi-hop QA datasets show that we can surpass recent approaches including those using additional knowledge graphs while maintaining high explainability on OpenBookQA and achieve a new state-of-the-art result on ARC-Challenge in a computationally practicable setting.
Existing data-driven methods can well handle short text generation. However, when applied to the long-text generation scenarios such as story generation or advertising text generation in the commercial scenario, these methods may generate illogical and uncontrollable texts. To address these aforementioned issues, we propose a graph-based grouping planner(GGP) following the idea of first-plan-then-generate. Specifically, given a collection of key phrases, GGP firstly encodes these phrases into an instance-level sequential representation and a corpus-level graph-based representation separately. With these two synergic representations, we then regroup these phrases into a fine-grained plan, based on which we generate the final long text. We conduct our experiments on three long text generation datasets and the experimental results reveal that GGP significantly outperforms baselines, which proves that GGP can control the long text generation by knowing how to say and in what order.