Do you want to publish a course? Click here

Testing the role of environmental effects on the initial mass function of low-mass stars

208   0   0.0 ( 0 )
 Added by Belinda Damian
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the star formation process, the vital impact of environmental factors such as feedback from massive stars and stellar density on the form of the initial mass function (IMF) at low-mass end is yet to be understood. Hence a systematic, highly sensitive observational analysis of a sample of regions under diverse environmental conditions is essential. We analyse the IMF of eight young clusters ($<$5 Myr), namely IC1848-West, IC1848-East, NGC 1893, NGC 2244, NGC 2362, NGC 6611, Stock 8 and Cygnus OB2, which are located at the Galactocentric distance ($R_g$) range $sim$6-12 kpc along with nearby cluster IC348 using deep near-IR photometry and Gaia DR2. These clusters are embedded in massive stellar environments of radiation strength $log(L_{FUV}/L_{odot})$ $sim$2.6 to 6.8, $log(L_{EUV})$ $sim$42.2 to 50.85 photons/s, with stellar density in the range of $sim$170 - 1220 stars/pc$^2$. After structural analysis and field decontamination we obtain an unbiased, uniformly sensitive sample of pre-main-sequence members of the clusters down to brown-dwarf regime. The lognormal fit to the IMF of nine clusters gives the mean characteristic mass ($m_c$) and $sigma$ of 0.32$pm$0.02 $M_odot$ and 0.47$pm$0.02, respectively. We compare the IMF with that of low- and high-mass clusters across the Milky Way. We also check for any systematic variation with respect to the radiation field strength, stellar density as well with $R_g$. We conclude that there is no strong evidence for environmental effect in the underlying form of the IMF of these clusters.



rate research

Read More

130 - S. Goswami , A. Slemer , P. Marigo 2021
There is mounting evidence that the stellar initial mass function (IMF) could extend much beyond the canonical Mi ~100, Msun limit, but the impact of such hypothesis on the chemical enrichment of galaxies still remains to be clarified. We aim to address this question by analysing the observed abundances of thin- and thick-disc stars in the Milky Way with chemical evolution models that account for the contribution of very massive stars dying as pair-instability supernovae. We built new sets of chemical yields from massive and very massive stars up to Mi ~ 350 Msun, by combining the wind ejecta extracted from our hydrostatic stellar evolution models with explosion ejecta from the literature. Using a simple chemical evolution code we analyse the effects of adopting different yield tables by comparing predictions against observations of stars in the solar vicinity. After several tests, we focus on the [O/Fe] ratio which best separates the chemical patterns of the two Milky Way components. We find that with a standard IMF, truncated at Mi ~ 100 Msun, we can reproduce various observational constraints for thin-disc stars, but the same IMF fails to account for the [O/Fe] ratios of thick-disc stars. The best results are obtained by extending the IMF up to Mi = 350 Msun and including the chemical ejecta of very massive stars, in the form of winds and pair-instability supernova explosions.Our study indicates that PISN played a significant role in shaping the chemical evolution of the Milky Way thick disc. By including their chemical yields it is easier to reproduce not only the level of the alpha-enhancement but also the observed slope of thick-disc stars in the [O/Fe] vs [Fe/H] diagram. The bottom line is that the contribution of very massive stars to the chemical enrichment of galaxies is potentially quite important and should not be neglected in chemical evolution models.
As a young massive cluster in the Central Molecular Zone, the Arches cluster is a valuable probe of the stellar Initial Mass Function (IMF) in the extreme Galactic Center environment. We use multi-epoch Hubble Space Telescope observations to obtain high-precision proper motion and photometric measurements of the cluster, calculating cluster membership probabilities for stars down to 1.8 M$_{odot}$ between cluster radii of 0.25 pc -- 3.0 pc. We achieve a cluster sample with just ~8% field contamination, a significant improvement over photometrically-selected samples which are severely compromised by the differential extinction across the field. Combining this sample with K-band spectroscopy of 5 cluster members, we forward model the Arches cluster to simultaneously constrain its IMF and other properties (such as age and total mass) while accounting for observational uncertainties, completeness, mass segregation, and stellar multiplicity. We find that the Arches IMF is best described by a 1-segment power law that is significantly top-heavy: $alpha$ = 1.80 $pm$ 0.05 (stat) $pm$ 0.06 (sys), where dN/dm $propto$ m$^{-alpha}$, though we cannot discount a 2-segment power law model with a high-mass slope only slightly shallower than local star forming regions ($alpha$ = 2.04$^{+0.14}_{-0.19}$ $pm$ 0.04) but with a break at 5.8$^{+3.2}_{-1.2}$ $pm$ 0.02 M$_{odot}$. In either case, the Arches IMF is significantly different than the standard IMF. Comparing the Arches to other young massive clusters in the Milky Way, we find tentative evidence for a systematically top-heavy IMF at the Galactic Center.
We test the hypothesis that the initial mass function (IMF) is determined by the density probability distribution function (PDF) produced by supersonic turbulence. We compare 14 simulations of star cluster formation in 50 solar mass molecular cloud cores where the initial turbulence contains either purely solenoidal or purely compressive modes, in each case resolving fragmentation to the opacity limit to determine the resultant IMF. We find statistically indistinguishable IMFs between the two sets of calculations, despite a factor of two difference in the star formation rate and in the standard deviation of $log(rho)$. This suggests that the density PDF, while determining the star formation rate, is not the primary driver of the IMF.
The observed stellar initial mass function (IMF) appears to vary, becoming bottom-heavy in the centres of the most massive, metal-rich early-type galaxies. It is still unclear what physical processes might cause this IMF variation. In this paper, we demonstrate that the abundance of deuterium in the birth clouds of forming stars may be important in setting the IMF. We use models of disc accretion onto low-mass protostars to show that those forming from deuterium-poor gas are expected to have zero-age main sequence masses significantly lower than those forming from primordial (high deuterium fraction) material. This deuterium abundance effect depends on stellar mass in our simple models, such that the resulting IMF would become bottom-heavy - as seen in observations. Stellar mass loss is entirely deuterium-free and is important in fuelling star formation across cosmic time. Using the EAGLE simulation we show that stellar mass loss-induced deuterium variations are strongest in the same regions where IMF variations are observed: at the centres of the most massive, metal-rich, passive galaxies. While our analysis cannot prove that the deuterium abundance is the root cause of the observed IMF variation, it sets the stage for future theoretical and observational attempts to study this possibility.
We use Gaia DR2 to measure the initial mass function (IMF) of stars within 250 pc and masses in the range 0.2 < m/Msun < 1.0, separated according to kinematics and metallicity, as determined from Gaia transverse velocity, v_T, and location on the Hertzsprung-Russell diagram (HRD). The predominant thin-disc population (v_T < 40 km/s) has an IMF similar to traditional (e.g. Kroupa 2001}) stellar IMFs, with star numbers per mass interval dN/dm described by a broken power law, m^(-alpha), and index alpha_high=2.03 +0.14/-0.05 above m~0.5, shallowing to alpha_low=1.34 +0.11/-0.22 at m~<0.5. Thick-disc stars (60 km/s < v_T < 150 km/s) and stars belonging to the high-metallicity or red-sequence halo (v_T > 100 km/s or v_T > 200 km/s, and located above the isochrone on the HRD with metallicity [M/H] > -0.6) have a somewhat steeper high-mass slope, alpha_high=2.35 +0.97/-0.19 (and a similar low-mass slope alpha_low=1.14 +0.42/-0.50). Halo stars from the blue sequence, which are characterised by low-metallicity ([M/H] < -0.6), however, have a distinct, bottom-heavy IMF, well-described by a single power law with alpha=1.82 +0.17/-0.14 over most of the mass range probed. The IMF of the low-metallicity halo is reminiscent of the Salpeter-like IMF that has been measured in massive early-type galaxies, a stellar population that, like Milky-Way halo stars, has a high ratio of alpha elements to iron, [alpha/Fe]. Blue-sequence stars are likely the debris from accretion by the Milky Way, ~10 Gyrs ago, of the Gaia-Enceladus dwarf galaxy, or similar events. These results hint at a distinct mode of star formation common to two ancient stellar populations -- elliptical galaxies and galaxies possibly accreted early-on by ours.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا