Do you want to publish a course? Click here

Where and What? Examining Interpretable Disentangled Representations

83   0   0.0 ( 0 )
 Added by Xinqi Zhu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Capturing interpretable variations has long been one of the goals in disentanglement learning. However, unlike the independence assumption, interpretability has rarely been exploited to encourage disentanglement in the unsupervised setting. In this paper, we examine the interpretability of disentangled representations by investigating two questions: where to be interpreted and what to be interpreted? A latent code is easily to be interpreted if it would consistently impact a certain subarea of the resulting generated image. We thus propose to learn a spatial mask to localize the effect of each individual latent dimension. On the other hand, interpretability usually comes from latent dimensions that capture simple and basic variations in data. We thus impose a perturbation on a certain dimension of the latent code, and expect to identify the perturbation along this dimension from the generated images so that the encoding of simple variations can be enforced. Additionally, we develop an unsupervised model selection method, which accumulates perceptual distance scores along axes in the latent space. On various datasets, our models can learn high-quality disentangled representations without supervision, showing the proposed modeling of interpretability is an effective proxy for achieving unsupervised disentanglement.



rate research

Read More

Feature attribution (FA), or the assignment of class-relevance to different locations in an image, is important for many classification problems but is particularly crucial within the neuroscience domain, where accurate mechanistic models of behaviours, or disease, require knowledge of all features discriminative of a trait. At the same time, predicting class relevance from brain images is challenging as phenotypes are typically heterogeneous, and changes occur against a background of significant natural variation. Here, we present a novel framework for creating class specific FA maps through image-to-image translation. We propose the use of a VAE-GAN to explicitly disentangle class relevance from background features for improved interpretability properties, which results in meaningful FA maps. We validate our method on 2D and 3D brain image datasets of dementia (ADNI dataset), ageing (UK Biobank), and (simulated) lesion detection. We show that FA maps generated by our method outperform baseline FA methods when validated against ground truth. More significantly, our approach is the first to use latent space sampling to support exploration of phenotype variation. Our code will be available online at https://github.com/CherBass/ICAM.
We propose an interpretable Capsule Network, iCaps, for image classification. A capsule is a group of neurons nested inside each layer, and the one in the last layer is called a class capsule, which is a vector whose norm indicates a predicted probability for the class. Using the class capsule, existing Capsule Networks already provide some level of interpretability. However, there are two limitations which degrade its interpretability: 1) the class capsule also includes classification-irrelevant information, and 2) entities represented by the class capsule overlap. In this work, we address these two limitations using a novel class-supervised disentanglement algorithm and an additional regularizer, respectively. Through quantitative and qualitative evaluations on three datasets, we demonstrate that the resulting classifier, iCaps, provides a prediction along with clear rationales behind it with no performance degradation.
Unsupervised model transfer has the potential to greatly improve the generalizability of deep models to novel domains. Yet the current literature assumes that the separation of target data into distinct domains is known as a priori. In this paper, we propose the task of Domain-Agnostic Learning (DAL): How to transfer knowledge from a labeled source domain to unlabeled data from arbitrary target domains? To tackle this problem, we devise a novel Deep Adversarial Disentangled Autoencoder (DADA) capable of disentangling domain-specific features from class identity. We demonstrate experimentally that when the target domain labels are unknown, DADA leads to state-of-the-art performance on several image classification datasets.
Gait, the walking pattern of individuals, is one of the important biometrics modalities. Most of the existing gait recognition methods take silhouettes or articulated body models as gait features. These methods suffer from degraded recognition performance when handling confounding variables, such as clothing, carrying and viewing angle. To remedy this issue, we propose a novel AutoEncoder framework, GaitNet, to explicitly disentangle appearance, canonical and pose features from RGB imagery. The LSTM integrates pose features over time as a dynamic gait feature while canonical features are averaged as a static gait feature. Both of them are utilized as classification features. In addition, we collect a Frontal-View Gait (FVG) dataset to focus on gait recognition from frontal-view walking, which is a challenging problem since it contains minimal gait cues compared to other views. FVG also includes other important variations, e.g., walking speed, carrying, and clothing. With extensive experiments on CASIA-B, USF, and FVG datasets, our method demonstrates superior performance to the SOTA quantitatively, the ability of feature disentanglement qualitatively, and promising computational efficiency. We further compare our GaitNet with state-of-the-art face recognition to demonstrate the advantages of gait biometrics identification under certain scenarios, e.g., long distance/lower resolutions, cross viewing angles.
Face images are subject to many different factors of variation, especially in unconstrained in-the-wild scenarios. For most tasks involving such images, e.g. expression recognition from video streams, having enough labeled data is prohibitively expensive. One common strategy to tackle such a problem is to learn disentangled representations for the different factors of variation of the observed data using adversarial learning. In this paper, we use a formulation of the adversarial loss to learn disentangled representations for face images. The used model facilitates learning on single-task datasets and improves the state-of-the-art in expression recognition with an accuracy of60.53%on the AffectNetdataset, without using any additional data.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا