Do you want to publish a course? Click here

Signatures of the quantum nature of gravity in the differential motion of two masses

67   0   0.0 ( 0 )
 Added by Animesh Datta
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that a signature of the quantum nature of gravity is the quantum mechanical squeezing of the differential motion of two identical masses with respect to their common mode. This is because the gravitational interaction depends solely on the relative position of the two masses. In principle, this squeezing is equivalent to quantum entanglement between the masses. In practice, detecting the squeezing is more feasible than detecting the entanglement. To that end, we propose an optical interferometric scheme to falsify hypothetical models of gravity.



rate research

Read More

Can quantum-mechanical particles propagating on a fixed spacetime background be approximated as test bodies satisfying the weak equivalence principle? We ultimately answer the question in the negative but find that, when universality of free-fall is assessed locally, a nontrivial agreement between quantum mechanics and the weak equivalence principle exists. Implications for mass sensing by quantum probes are discussed in some details.
Experiments have recently been proposed testing whether quantum gravitational interactions generate entanglement between adjacent masses in position superposition states. We propose potentially less challenging experiments that test quantum gravity against theories with classical space-times defined by postulating semi-classical gravity (or classical effects of similar scale) for mesoscopic systems.
In a recent article Wang et al. (Class. Quantum Grav. 23 (2006) L59), demonstrated that the phase of a particle fluctuates due to interactions with random deviations of a conformal gravitational field. Furthermore they demonstrated that atom interferometers are sensitive to these fluctuations and that sensitivity to Planck scale effects could be achieved with a sufficiently sensitive interferometer. In this paper we demonstrate that a class of entangled states, the N-atom Greenberger-Horne-Zeilinger (GHZ) states, provide a better scaling than atom interferometers and that current experiments are capable of making a significant impact in this field. We outline an experiment which uses atomic beams of rubidium atoms excited to Rydberg states. The atoms undergo controlled collisions in high quality factor microwave resonators in a sequence that makes the resulting state highly sensitive to conformal field fluctuations. We show that a significant advance in sensitivity is possible.
Quantum gravity aims to describe gravity in quantum mechanical terms. How exactly this needs to be done remains an open question. Various proposals have been put on the table, such as canonical quantum gravity, loop quantum gravity, string theory, etc. These proposals often encounter technical and conceptual problems. In this chapter, we focus on canonical quantum gravity and discuss how many conceptual problems, such as the measurement problem and the problem of time, can be overcome by adopting a Bohmian point of view. In a Bohmian theory (also called pilot-wave theory or de Broglie-Bohm theory, after its originators de Broglie and Bohm), a system is described by certain variables in space-time such as particles or fields or something else, whose dynamics depends on the wave function. In the context of quantum gravity, these variables are a space-time metric and suitable variable for the matter fields (e.g., particles or fields). In addition to solving the conceptual problems, the Bohmian approach yields new applications and predictions in quantum cosmology. These include space-time singularity resolution, new types of semi-classical approximations to quantum gravity, and approximations for quantum perturbations moving in a quantum background.
178 - Xiao-Kan Guo , Qing-yu Cai 2018
The back reactions of Hawking radiation allow nontrivial correlations between consecutive Hawking quanta, which gives a possible way of resolving the paradox of black hole information loss known as the hidden messenger method. In a recent work of Ma {it et al} [arXiv:1711.10704], this method is enhanced by a general derivation using small deviations of the states of Hawking quanta off canonical typicality. In this paper, we use this typicality argument to study the effects of generic back reactions on the quantum geometries described by spin network states, and discuss the viability of entropy conservation in loop quantum gravity. We find that such back reactions lead to small area deformations of quantum geometries including those of quantum black holes. This shows that the hidden-messenger method is still viable in loop quantum gravity, which is a first step towards resolving the paradox of black hole information loss in quantum gravity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا