No Arabic abstract
In a recent article Wang et al. (Class. Quantum Grav. 23 (2006) L59), demonstrated that the phase of a particle fluctuates due to interactions with random deviations of a conformal gravitational field. Furthermore they demonstrated that atom interferometers are sensitive to these fluctuations and that sensitivity to Planck scale effects could be achieved with a sufficiently sensitive interferometer. In this paper we demonstrate that a class of entangled states, the N-atom Greenberger-Horne-Zeilinger (GHZ) states, provide a better scaling than atom interferometers and that current experiments are capable of making a significant impact in this field. We outline an experiment which uses atomic beams of rubidium atoms excited to Rydberg states. The atoms undergo controlled collisions in high quality factor microwave resonators in a sequence that makes the resulting state highly sensitive to conformal field fluctuations. We show that a significant advance in sensitivity is possible.
We argue that if particularly powerful electromagnetic afterglows of the gravitational waves bursts will be observed in the future, this could be used as a strong observational support for some suggested quantum alternatives for black holes (e.g., firewalls and gravastars). A universal absence of powerful afterglows should be taken as a suggestive argument against such hypothetical quantum-gravity objects.
We study Quantum Gravity effects on the density of states in statistical mechanics and its implications for the critical temperature of a Bose Einstein Condensate and fraction of bosons in its ground state. We also study the effects of compact extra dimensions on the critical temperature and the fraction. We consider both neutral and charged bosons in the study and show that the effects may just be measurable in current and future experiments.
We propose an experiment to test the Weak Equivalence Principle (WEP) with a test mass consisting of two entangled atoms of different species. In the proposed experiment, a coherent measurement of the differential gravity acceleration between the two atomic species is considered, by entangling two atom interferometers operating on the two species. The entanglement between the two atoms is heralded at the initial beam splitter of the interferometers through the detection of a single photon emitted by either of the atoms, together with the impossibility of distinguishing which atom emitted the photon. In contrast to current and proposed tests of the WEP, our proposal explores the validity of the WEP in a regime where the two particles involved in the differential gravity acceleration measurement are not classically independent, but entangled. We propose an experimental implementation using $^{85}$Rb and $^{87}$Rb atoms entangled by a vacuum stimulated rapid adiabatic passage protocol implemented in a high finesse optical cavity. We show that an accuracy below $10^{-7}$ on the Eotvos parameter can be achieved.
Experiments have recently been proposed testing whether quantum gravitational interactions generate entanglement between adjacent masses in position superposition states. We propose potentially less challenging experiments that test quantum gravity against theories with classical space-times defined by postulating semi-classical gravity (or classical effects of similar scale) for mesoscopic systems.
Quantum gravity aims to describe gravity in quantum mechanical terms. How exactly this needs to be done remains an open question. Various proposals have been put on the table, such as canonical quantum gravity, loop quantum gravity, string theory, etc. These proposals often encounter technical and conceptual problems. In this chapter, we focus on canonical quantum gravity and discuss how many conceptual problems, such as the measurement problem and the problem of time, can be overcome by adopting a Bohmian point of view. In a Bohmian theory (also called pilot-wave theory or de Broglie-Bohm theory, after its originators de Broglie and Bohm), a system is described by certain variables in space-time such as particles or fields or something else, whose dynamics depends on the wave function. In the context of quantum gravity, these variables are a space-time metric and suitable variable for the matter fields (e.g., particles or fields). In addition to solving the conceptual problems, the Bohmian approach yields new applications and predictions in quantum cosmology. These include space-time singularity resolution, new types of semi-classical approximations to quantum gravity, and approximations for quantum perturbations moving in a quantum background.