Do you want to publish a course? Click here

Central extensions of 3-dimensional Zinbiel algebras

90   0   0.0 ( 0 )
 Added by Ivan Kaygorodov
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We describe all central extensions of all $3$-dimensional non-zero complex Zinbiel algebras. As a corollary, we have a full classification of $4$-dimensional non-trivial complex Zinbiel algebras and a full classification of $5$-dimensional non-trivial complex Zinbiel algebras with $2$-dimensional annihilator, which gives the principal step in the algebraic classification of $5$-dimensional Zinbiel algebras.



rate research

Read More

411 - Pasha Zusmanovich 2014
This is an old paper put here for archeological purposes. We compute the second cohomology of current Lie algebras of the form $Lotimes A$, where $L$ belongs to some class of Lie algebras which includes classical simple and Zassenhaus algebras, and of some modular semisimple Lie algebras. The results are largely superseded by subsequent papers, though, perhaps, some tricks and observations used here remain of minor interest.
We present the classification of a subclass of $n$-dimensional naturally graded Zinbiel algebras. This subclass has the nilindex $n-3$ and the characteristic sequence $(n-3,2,1).$ In fact, this result completes the classification of naturally graded Zinbiel algebras of nilindex $n-3.$
In this work nul-filiform and filiform Zinbiel algebras are described up to isomorphism. Moreover, the classification of complex Zinbiel algebras is extended from dimensions $leq 3$ up to the dimension $4.$
In this work the description up to isomorphism of complex naturally graded quasi-filiform Zinbiel algebras is obtained.
In this paper we describe central extensions of some nilpotent Leibniz algebras. Namely, central extensions of the Leibniz algebra with maximal index of nilpotency are classified. Moreover, non-split central extensions of naturally graded filiform non-Lie Leibniz algebras are described up to isomorphism. It is shown that $k$-dimensional central extensions ($kgeq 5$) of these algebras are split.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا