Do you want to publish a course? Click here

Central extensions of null-filiform and naturally graded filiform non-Lie Leibniz algebras

259   0   0.0 ( 0 )
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we describe central extensions of some nilpotent Leibniz algebras. Namely, central extensions of the Leibniz algebra with maximal index of nilpotency are classified. Moreover, non-split central extensions of naturally graded filiform non-Lie Leibniz algebras are described up to isomorphism. It is shown that $k$-dimensional central extensions ($kgeq 5$) of these algebras are split.



rate research

Read More

In this paper solvable Leibniz algebras with naturally graded non-Lie $p$-filiform $(n-pgeq4)$ nilradical and with one-dimensional complemented space of nilradical are described. Moreover, solvable Leibniz algebras with abelian nilradical and extremal (minimal, maximal) dimensions of complemented space nilradical are studied. The rigidity of solvable Leibniz algebras with abelian nilradical and maximal dimension of its complemented space is proved.
In this paper we show that the method for describing solvable Lie algebras with given nilradical by means of non-nilpotent outer derivations of the nilradical is also applicable to the case of Leibniz algebras. Using this method we extend the classification of solvable Lie algebras with naturally graded filiform Lie algebra to the case of Leibniz algebras. Namely, the classification of solvable Leibniz algebras whose nilradical is a naturally graded filiform Leibniz algebra is obtained.
We describe infinitesimal deformations of complex naturally graded filiform Leibniz algebras. It is known that any $n$-dimensional filiform Lie algebra can be obtained by a linear integrable deformation of the naturally graded algebra $F_n^3(0)$. We establish that in the same way any $n$-dimensional filiform Leibniz algebra can be obtained by an infinitesimal deformation of the filiform Leibniz algebras $F_{n}^1,$ $F_{n}^2$ and $F_{n}^3(alpha)$. Moreover, we describe the linear integrable deformations of above-mentioned algebras with a fixed basis of $HL^2$ in the set of all $n$-dimensional Leibniz algebras. Among these deformations we found one new rigid algebra.
The description of complex solvable Leibniz algebras whose nilradical is a naturally graded filiform algebra is already known. Unfortunately, a mistake was made in that description. Namely, in the case where the dimension of the solvable Leibniz algebra with nilradical $F_n^1$ is equal to $n+2$, it was asserted that there is no such algebra. However, it was possible for us to find a unique $(n+2)$-dimensional solvable Leibniz algebra with nilradical $F_n^1$. In addition, we establish the triviality of the second group of cohomology for this algebra with coefficients in itself, which implies its rigidity.
In this paper we investigate Leibniz algebras whose quotient Lie algebra is a naturally graded filiform Lie algebra $n_{n,1}.$ We introduce a Fock module for the algebra $n_{n,1}$ and provide classification of Leibniz algebras $L$ whose corresponding Lie algebra $L/I$ is the algebra $n_{n,1}$ with condition that the ideal $I$ is a Fock $n_{n,1}$-module, where $I$ is the ideal generated by squares of elements from $L$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا