Do you want to publish a course? Click here

Generalized Kahler-Ricci flow on toric Fano varieties

128   0   0.0 ( 0 )
 Added by Jeffrey Streets
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We study the generalized Kahler-Ricci flow with initial data of symplectic type, and show that this condition is preserved. In the case of a Fano background with toric symmetry, we establish global existence of the normalized flow. We derive an extension of Perelmans entropy functional to this setting, which yields convergence of nonsingular solutions at infinity. Furthermore, we derive an extension of Mabuchis $K$-energy to this setting, which yields weak convergence of the flow.



rate research

Read More

300 - Xiuxiong Chen , Weiyong He 2009
We prove the longtime existence and convergence of the Calabi flow on toric Fano surfaces in a large family of Kahler classes where the class has positive extremal Hamiltonian potential and the initial Calabi energy is bounded by some constant. This is an extension of our previous work. We use the toric condition in a more essential way to rule out bubbles.
This book gives an introduction to fundamental aspects of generalized Riemannian, complex, and Kahler geometry. This leads to an extension of the classical Einstein-Hilbert action, which yields natural extensions of Einstein and Calabi-Yau structures as `canonical metrics in generalized Riemannian and complex geometry. The generalized Ricci flow is introduced as a tool for constructing such metrics, and extensions of the fundamental Hamilton/Perelman regularity theory of Ricci flow are proved. These results are refined in the setting of generalized complex geometry, where the generalized Ricci flow is shown to preserve various integrability conditions, taking the form of pluriclosed flow and generalized Kahler-Ricci flow. This leads to global convergence results, and applications to complex geometry. A purely mathematical introduction to the physical idea of T-duality is given, and a discussion of its relationship to generalized Ricci flow.
We prove the existence of Kahler-Einstein metrics on Q-Gorenstein smoothable, K-polystable Q-Fano varieties, and we show how these metrics behave, in the Gromov-Hausdorff sense, under Q-Gorenstein smoothings.
In this article, we study the Ricci flow neckpinch in the context of metric measure spaces. We introduce the notion of a Ricci flow metric measure spacetime and of a weak (refined) super Ricci flow associated to convex cost functions (cost functions which are increasing convex functions of the distance function). Our definition of a weak super Ricci flow is based on the coupled contraction property for suitably defined diffusions on maximal diffusion components. In our main theorem, we show that if a non-degenerate spherical neckpinch can be continued beyond the singular time by a smooth forward evolution then the corresponding Ricci flow metric measure spacetime through the singularity is a weak super Ricci flow for a (and therefore for all) convex cost functions if and only if the single point pinching phenomenon holds at singular times; i.e., if singularities form on a finite number of totally geodesic hypersurfaces of the form ${x} times sphere^n$. We also show the spacetime is a refined weak super Ricci flow if and only if the flow is a smooth Ricci flow with possibly singular final time.
122 - Jeffrey Streets 2021
We give a complete description of the global existence and convergence for the Ricci-Yang-Mills flow on $T^k$ bundles over Riemann surfaces. These results equivalently describe solutions to generalized Ricci flow and pluriclosed flow with symmetry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا