Do you want to publish a course? Click here

Self-Supervised Learning for Semi-Supervised Temporal Action Proposal

238   0   0.0 ( 0 )
 Added by Xiang Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Self-supervised learning presents a remarkable performance to utilize unlabeled data for various video tasks. In this paper, we focus on applying the power of self-supervised methods to improve semi-supervised action proposal generation. Particularly, we design an effective Self-supervised Semi-supervised Temporal Action Proposal (SSTAP) framework. The SSTAP contains two crucial branches, i.e., temporal-aware semi-supervised branch and relation-aware self-supervised branch. The semi-supervised branch improves the proposal model by introducing two temporal perturbations, i.e., temporal feature shift and temporal feature flip, in the mean teacher framework. The self-supervised branch defines two pretext tasks, including masked feature reconstruction and clip-order prediction, to learn the relation of temporal clues. By this means, SSTAP can better explore unlabeled videos, and improve the discriminative abilities of learned action features. We extensively evaluate the proposed SSTAP on THUMOS14 and ActivityNet v1.3 datasets. The experimental results demonstrate that SSTAP significantly outperforms state-of-the-art semi-supervised methods and even matches fully-supervised methods. Code is available at https://github.com/wangxiang1230/SSTAP.



rate research

Read More

This paper focuses on Semi-Supervised Object Detection (SSOD). Knowledge Distillation (KD) has been widely used for semi-supervised image classification. However, adapting these methods for SSOD has the following obstacles. (1) The teacher model serves a dual role as a teacher and a student, such that the teacher predictions on unlabeled images may be very close to those of student, which limits the upper-bound of the student. (2) The class imbalance issue in SSOD hinders an efficient knowledge transfer from teacher to student. To address these problems, we propose a novel method Temporal Self-Ensembling Teacher (TSE-T) for SSOD. Differently from previous KD based methods, we devise a temporally evolved teacher model. First, our teacher model ensembles its temporal predictions for unlabeled images under stochastic perturbations. Second, our teacher model ensembles its temporal model weights with the student model weights by an exponential moving average (EMA) which allows the teacher gradually learn from the student. These self-ensembling strategies increase data and model diversity, thus improving teacher predictions on unlabeled images. Finally, we use focal loss to formulate consistency regularization term to handle the data imbalance problem, which is a more efficient manner to utilize the useful information from unlabeled images than a simple hard-thresholding method which solely preserves confident predictions. Evaluated on the widely used VOC and COCO benchmarks, the mAP of our method has achieved 80.73% and 40.52% on the VOC2007 test set and the COCO2014 minval5k set respectively, which outperforms a strong fully-supervised detector by 2.37% and 1.49%. Furthermore, our method sets the new state-of-the-art in SSOD on VOC2007 test set which outperforms the baseline SSOD method by 1.44%. The source code of this work is publicly available at http://github.com/syangdong/tse-t.
Temporal cues in videos provide important information for recognizing actions accurately. However, temporal-discriminative features can hardly be extracted without using an annotated large-scale video action dataset for training. This paper proposes a novel Video-based Temporal-Discriminative Learning (VTDL) framework in self-supervised manner. Without labelled data for network pretraining, temporal triplet is generated for each anchor video by using segment of the same or different time interval so as to enhance the capacity for temporal feature representation. Measuring temporal information by time derivative, Temporal Consistent Augmentation (TCA) is designed to ensure that the time derivative (in any order) of the augmented positive is invariant except for a scaling constant. Finally, temporal-discriminative features are learnt by minimizing the distance between each anchor and its augmented positive, while the distance between each anchor and its augmented negative as well as other videos saved in the memory bank is maximized to enrich the representation diversity. In the downstream action recognition task, the proposed method significantly outperforms existing related works. Surprisingly, the proposed self-supervised approach is better than fully-supervised methods on UCF101 and HMDB51 when a small-scale video dataset (with only thousands of videos) is used for pre-training. The code has been made publicly available on https://github.com/FingerRec/Self-Supervised-Temporal-Discriminative-Representation-Learning-for-Video-Action-Recognition.
This paper proposes to learn reliable dense correspondence from videos in a self-supervised manner. Our learning process integrates two highly related tasks: tracking large image regions emph{and} establishing fine-grained pixel-level associations between consecutive video frames. We exploit the synergy between both tasks through a shared inter-frame affinity matrix, which simultaneously models transitions between video frames at both the region- and pixel-levels. While region-level localization helps reduce ambiguities in fine-grained matching by narrowing down search regions; fine-grained matching provides bottom-up features to facilitate region-level localization. Our method outperforms the state-of-the-art self-supervised methods on a variety of visual correspondence tasks, including video-object and part-segmentation propagation, keypoint tracking, and object tracking. Our self-supervised method even surpasses the fully-supervised affinity feature representation obtained from a ResNet-18 pre-trained on the ImageNet.
Despite the recent progress of fully-supervised action segmentation techniques, the performance is still not fully satisfactory. One main challenge is the problem of spatiotemporal variations (e.g. different people may perform the same activity in various ways). Therefore, we exploit unlabeled videos to address this problem by reformulating the action segmentation task as a cross-domain problem with domain discrepancy caused by spatio-temporal variations. To reduce the discrepancy, we propose Self-Supervised Temporal Domain Adaptation (SSTDA), which contains two self-supervised auxiliary tasks (binary and sequential domain prediction) to jointly align cross-domain feature spaces embedded with local and global temporal dynamics, achieving better performance than other Domain Adaptation (DA) approaches. On three challenging benchmark datasets (GTEA, 50Salads, and Breakfast), SSTDA outperforms the current state-of-the-art method by large margins (e.g. for the F1@25 score, from 59.6% to 69.1% on Breakfast, from 73.4% to 81.5% on 50Salads, and from 83.6% to 89.1% on GTEA), and requires only 65% of the labeled training data for comparable performance, demonstrating the usefulness of adapting to unlabeled target videos across variations. The source code is available at https://github.com/cmhungsteve/SSTDA.
Self-supervised learning has shown great potentials in improving the deep learning model in an unsupervised manner by constructing surrogate supervision signals directly from the unlabeled data. Different from existing works, we present a novel way to obtain the surrogate supervision signal based on high-level feature maps under consistency regularization. In this paper, we propose a Spatio-Temporal Consistency Regularization between different output features generated from a siamese network including a clean path fed with original video and a noise path fed with the corresponding augmented video. Based on the Spatio-Temporal characteristics of video, we develop two video-based data augmentation methods, i.e., Spatio-Temporal Transformation and Intra-Video Mixup. Consistency of the former one is proposed to model transformation consistency of features, while the latter one aims at retaining spatial invariance to extract action-related features. Extensive experiments demonstrate that our method achieves substantial improvements compared with state-of-the-art self-supervised learning methods for action recognition. When using our method as an additional regularization term and combine with current surrogate supervision signals, we achieve 22% relative improvement over the previous state-of-the-art on HMDB51 and 7% on UCF101.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا