Do you want to publish a course? Click here

Joint-task Self-supervised Learning for Temporal Correspondence

107   0   0.0 ( 0 )
 Added by Sifei Liu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

This paper proposes to learn reliable dense correspondence from videos in a self-supervised manner. Our learning process integrates two highly related tasks: tracking large image regions emph{and} establishing fine-grained pixel-level associations between consecutive video frames. We exploit the synergy between both tasks through a shared inter-frame affinity matrix, which simultaneously models transitions between video frames at both the region- and pixel-levels. While region-level localization helps reduce ambiguities in fine-grained matching by narrowing down search regions; fine-grained matching provides bottom-up features to facilitate region-level localization. Our method outperforms the state-of-the-art self-supervised methods on a variety of visual correspondence tasks, including video-object and part-segmentation propagation, keypoint tracking, and object tracking. Our self-supervised method even surpasses the fully-supervised affinity feature representation obtained from a ResNet-18 pre-trained on the ImageNet.

rate research

Read More

In this paper, we focus on the self-supervised learning of visual correspondence using unlabeled videos in the wild. Our method simultaneously considers intra- and inter-video representation associations for reliable correspondence estimation. The intra-video learning transforms the image contents across frames within a single video via the frame pair-wise affinity. To obtain the discriminative representation for instance-level separation, we go beyond the intra-video analysis and construct the inter-video affinity to facilitate the contrastive transformation across different videos. By forcing the transformation consistency between intra- and inter-video levels, the fine-grained correspondence associations are well preserved and the instance-level feature discrimination is effectively reinforced. Our simple framework outperforms the recent self-supervised correspondence methods on a range of visual tasks including video object tracking (VOT), video object segmentation (VOS), pose keypoint tracking, etc. It is worth mentioning that our method also surpasses the fully-supervised affinity representation (e.g., ResNet) and performs competitively against the recent fully-supervised algorithms designed for the specific tasks (e.g., VOT and VOS).
Self-supervised learning presents a remarkable performance to utilize unlabeled data for various video tasks. In this paper, we focus on applying the power of self-supervised methods to improve semi-supervised action proposal generation. Particularly, we design an effective Self-supervised Semi-supervised Temporal Action Proposal (SSTAP) framework. The SSTAP contains two crucial branches, i.e., temporal-aware semi-supervised branch and relation-aware self-supervised branch. The semi-supervised branch improves the proposal model by introducing two temporal perturbations, i.e., temporal feature shift and temporal feature flip, in the mean teacher framework. The self-supervised branch defines two pretext tasks, including masked feature reconstruction and clip-order prediction, to learn the relation of temporal clues. By this means, SSTAP can better explore unlabeled videos, and improve the discriminative abilities of learned action features. We extensively evaluate the proposed SSTAP on THUMOS14 and ActivityNet v1.3 datasets. The experimental results demonstrate that SSTAP significantly outperforms state-of-the-art semi-supervised methods and even matches fully-supervised methods. Code is available at https://github.com/wangxiang1230/SSTAP.
Temporal cues in videos provide important information for recognizing actions accurately. However, temporal-discriminative features can hardly be extracted without using an annotated large-scale video action dataset for training. This paper proposes a novel Video-based Temporal-Discriminative Learning (VTDL) framework in self-supervised manner. Without labelled data for network pretraining, temporal triplet is generated for each anchor video by using segment of the same or different time interval so as to enhance the capacity for temporal feature representation. Measuring temporal information by time derivative, Temporal Consistent Augmentation (TCA) is designed to ensure that the time derivative (in any order) of the augmented positive is invariant except for a scaling constant. Finally, temporal-discriminative features are learnt by minimizing the distance between each anchor and its augmented positive, while the distance between each anchor and its augmented negative as well as other videos saved in the memory bank is maximized to enrich the representation diversity. In the downstream action recognition task, the proposed method significantly outperforms existing related works. Surprisingly, the proposed self-supervised approach is better than fully-supervised methods on UCF101 and HMDB51 when a small-scale video dataset (with only thousands of videos) is used for pre-training. The code has been made publicly available on https://github.com/FingerRec/Self-Supervised-Temporal-Discriminative-Representation-Learning-for-Video-Action-Recognition.
Despite the recent progress of fully-supervised action segmentation techniques, the performance is still not fully satisfactory. One main challenge is the problem of spatiotemporal variations (e.g. different people may perform the same activity in various ways). Therefore, we exploit unlabeled videos to address this problem by reformulating the action segmentation task as a cross-domain problem with domain discrepancy caused by spatio-temporal variations. To reduce the discrepancy, we propose Self-Supervised Temporal Domain Adaptation (SSTDA), which contains two self-supervised auxiliary tasks (binary and sequential domain prediction) to jointly align cross-domain feature spaces embedded with local and global temporal dynamics, achieving better performance than other Domain Adaptation (DA) approaches. On three challenging benchmark datasets (GTEA, 50Salads, and Breakfast), SSTDA outperforms the current state-of-the-art method by large margins (e.g. for the F1@25 score, from 59.6% to 69.1% on Breakfast, from 73.4% to 81.5% on 50Salads, and from 83.6% to 89.1% on GTEA), and requires only 65% of the labeled training data for comparable performance, demonstrating the usefulness of adapting to unlabeled target videos across variations. The source code is available at https://github.com/cmhungsteve/SSTDA.
246 - Dezhao Luo , Chang Liu , Yu Zhou 2020
We propose a novel self-supervised method, referred to as Video Cloze Procedure (VCP), to learn rich spatial-temporal representations. VCP first generates blanks by withholding video clips and then creates options by applying spatio-temporal operations on the withheld clips. Finally, it fills the blanks with options and learns representations by predicting the categories of operations applied on the clips. VCP can act as either a proxy task or a target task in self-supervised learning. As a proxy task, it converts rich self-supervised representations into video clip operations (options), which enhances the flexibility and reduces the complexity of representation learning. As a target task, it can assess learned representation models in a uniform and interpretable manner. With VCP, we train spatial-temporal representation models (3D-CNNs) and apply such models on action recognition and video retrieval tasks. Experiments on commonly used benchmarks show that the trained models outperform the state-of-the-art self-supervised models with significant margins.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا