No Arabic abstract
The drone navigation requires the comprehensive understanding of both visual and geometric information in the 3D world. In this paper, we present a Visual-Geometric Fusion Network(VGF-Net), a deep network for the fusion analysis of visual/geometric data and the construction of 2.5D height maps for simultaneous drone navigation in novel environments. Given an initial rough height map and a sequence of RGB images, our VGF-Net extracts the visual information of the scene, along with a sparse set of 3D keypoints that capture the geometric relationship between objects in the scene. Driven by the data, VGF-Net adaptively fuses visual and geometric information, forming a unified Visual-Geometric Representation. This representation is fed to a new Directional Attention Model(DAM), which helps enhance the visual-geometric object relationship and propagates the informative data to dynamically refine the height map and the corresponding keypoints. An entire end-to-end information fusion and mapping system is formed, demonstrating remarkable robustness and high accuracy on the autonomous drone navigation across complex indoor and large-scale outdoor scenes. The dataset can be found in http://vcc.szu.edu.cn/research/2021/VGFNet.
Simultaneous localization and mapping (SLAM) remains challenging for a number of downstream applications, such as visual robot navigation, because of rapid turns, featureless walls, and poor camera quality. We introduce the Differentiable SLAM Network (SLAM-net) along with a navigation architecture to enable planar robot navigation in previously unseen indoor environments. SLAM-net encodes a particle filter based SLAM algorithm in a differentiable computation graph, and learns task-oriented neural network components by backpropagating through the SLAM algorithm. Because it can optimize all model components jointly for the end-objective, SLAM-net learns to be robust in challenging conditions. We run experiments in the Habitat platform with different real-world RGB and RGB-D datasets. SLAM-net significantly outperforms the widely adapted ORB-SLAM in noisy conditions. Our navigation architecture with SLAM-net improves the state-of-the-art for the Habitat Challenge 2020 PointNav task by a large margin (37% to 64% success). Project website: http://sites.google.com/view/slamnet
A complex visual navigation task puts an agent in different situations which call for a diverse range of visual perception abilities. For example, to go to the nearest chair, the agent might need to identify a chair in a living room using semantics, follow along a hallway using vanishing point cues, and avoid obstacles using depth. Therefore, utilizing the appropriate visual perception abilities based on a situational understanding of the visual environment can empower these navigation models in unseen visual environments. We propose to train an agent to fuse a large set of visual representations that correspond to diverse visual perception abilities. To fully utilize each representation, we develop an action-level representation fusion scheme, which predicts an action candidate from each representation and adaptively consolidate these action candidates into the final action. Furthermore, we employ a data-driven inter-task affinity regularization to reduce redundancies and improve generalization. Our approach leads to a significantly improved performance in novel environments over ImageNet-pretrained baseline and other fusion methods.
In audio-visual navigation, an agent intelligently travels through a complex, unmapped 3D environment using both sights and sounds to find a sound source (e.g., a phone ringing in another room). Existing models learn to act at a fixed granularity of agent motion and rely on simple recurrent aggregations of the audio observations. We introduce a reinforcement learning approach to audio-visual navigation with two key novel elements: 1) waypoints that are dynamically set and learned end-to-end within the navigation policy, and 2) an acoustic memory that provides a structured, spatially grounded record of what the agent has heard as it moves. Both new ideas capitalize on the synergy of audio and visual data for revealing the geometry of an unmapped space. We demonstrate our approach on two challenging datasets of real-world 3D scenes, Replica and Matterport3D. Our model improves the state of the art by a substantial margin, and our experiments reveal that learning the links between sights, sounds, and space is essential for audio-visual navigation. Project: http://vision.cs.utexas.edu/projects/audio_visual_waypoints.
Building on progress in feature representations for image retrieval, image-based localization has seen a surge of research interest. Image-based localization has the advantage of being inexpensive and efficient, often avoiding the use of 3D metric maps altogether. That said, the need to maintain a large number of reference images as an effective support of localization in a scene, nonetheless calls for them to be organized in a map structure of some kind. The problem of localization often arises as part of a navigation process. We are, therefore, interested in summarizing the reference images as a set of landmarks, which meet the requirements for image-based navigation. A contribution of this paper is to formulate such a set of requirements for the two sub-tasks involved: map construction and self-localization. These requirements are then exploited for compact map representation and accurate self-localization, using the framework of a network flow problem. During this process, we formulate the map construction and self-localization problems as convex quadratic and second-order cone programs, respectively. We evaluate our methods on publicly available indoor and outdoor datasets, where they outperform existing methods significantly.
In this paper we address the problem of visual reaction: the task of interacting with dynamic environments where the changes in the environment are not necessarily caused by the agent itself. Visual reaction entails predicting the future changes in a visual environment and planning accordingly. We study the problem of visual reaction in the context of playing catch with a drone in visually rich synthetic environments. This is a challenging problem since the agent is required to learn (1) how objects with different physical properties and shapes move, (2) what sequence of actions should be taken according to the prediction, (3) how to adjust the actions based on the visual feedback from the dynamic environment (e.g., when objects bouncing off a wall), and (4) how to reason and act with an unexpected state change in a timely manner. We propose a new dataset for this task, which includes 30K throws of 20 types of objects in different directions with different forces. Our results show that our model that integrates a forecaster with a planner outperforms a set of strong baselines that are based on tracking as well as pure model-based and model-free RL baselines. The code and dataset are available at github.com/KuoHaoZeng/Visual_Reaction.