Do you want to publish a course? Click here

Differentiable SLAM-net: Learning Particle SLAM for Visual Navigation

91   0   0.0 ( 0 )
 Added by Peter Karkus
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Simultaneous localization and mapping (SLAM) remains challenging for a number of downstream applications, such as visual robot navigation, because of rapid turns, featureless walls, and poor camera quality. We introduce the Differentiable SLAM Network (SLAM-net) along with a navigation architecture to enable planar robot navigation in previously unseen indoor environments. SLAM-net encodes a particle filter based SLAM algorithm in a differentiable computation graph, and learns task-oriented neural network components by backpropagating through the SLAM algorithm. Because it can optimize all model components jointly for the end-objective, SLAM-net learns to be robust in challenging conditions. We run experiments in the Habitat platform with different real-world RGB and RGB-D datasets. SLAM-net significantly outperforms the widely adapted ORB-SLAM in noisy conditions. Our navigation architecture with SLAM-net improves the state-of-the-art for the Habitat Challenge 2020 PointNav task by a large margin (37% to 64% success). Project website: http://sites.google.com/view/slamnet



rate research

Read More

261 - Rong Kang , Jieqi Shi , Xueming Li 2019
As the foundation of driverless vehicle and intelligent robots, Simultaneous Localization and Mapping(SLAM) has attracted much attention these days. However, non-geometric modules of traditional SLAM algorithms are limited by data association tasks and have become a bottleneck preventing the development of SLAM. To deal with such problems, many researchers seek to Deep Learning for help. But most of these studies are limited to virtual datasets or specific environments, and even sacrifice efficiency for accuracy. Thus, they are not practical enough. We propose DF-SLAM system that uses deep local feature descriptors obtained by the neural network as a substitute for traditional hand-made features. Experimental results demonstrate its improvements in efficiency and stability. DF-SLAM outperforms popular traditional SLAM systems in various scenes, including challenging scenes with intense illumination changes. Its versatility and mobility fit well into the need for exploring new environments. Since we adopt a shallow network to extract local descriptors and remain others the same as original SLAM systems, our DF-SLAM can still run in real-time on GPU.
This paper proposes a novel simultaneous localization and mapping (SLAM) approach, namely Attention-SLAM, which simulates human navigation mode by combining a visual saliency model (SalNavNet) with traditional monocular visual SLAM. Most SLAM methods treat all the features extracted from the images as equal importance during the optimization process. However, the salient feature points in scenes have more significant influence during the human navigation process. Therefore, we first propose a visual saliency model called SalVavNet in which we introduce a correlation module and propose an adaptive Exponential Moving Average (EMA) module. These modules mitigate the center bias to enable the saliency maps generated by SalNavNet to pay more attention to the same salient object. Moreover, the saliency maps simulate the human behavior for the refinement of SLAM results. The feature points extracted from the salient regions have greater importance in optimization process. We add semantic saliency information to the Euroc dataset to generate an open-source saliency SLAM dataset. Comprehensive test results prove that Attention-SLAM outperforms benchmarks such as Direct Sparse Odometry (DSO), ORB-SLAM, and Salient DSO in terms of efficiency, accuracy, and robustness in most test cases.
Blending representation learning approaches with simultaneous localization and mapping (SLAM) systems is an open question, because of their highly modular and complex nature. Functionally, SLAM is an operation that transforms raw sensor inputs into a distribution over the state(s) of the robot and the environment. If this transformation (SLAM) were expressible as a differentiable function, we could leverage task-based error signals to learn representations that optimize task performance. However, several components of a typical dense SLAM system are non-differentiable. In this work, we propose gradSLAM, a methodology for posing SLAM systems as differentiable computational graphs, which unifies gradient-based learning and SLAM. We propose differentiable trust-region optimizers, surface measurement and fusion schemes, and raycasting, without sacrificing accuracy. This amalgamation of dense SLAM with computational graphs enables us to backprop all the way from 3D maps to 2D pixels, opening up new possibilities in gradient-based learning for SLAM. TL;DR: We leverage the power of automatic differentiation frameworks to make dense SLAM differentiable.
This work presents a modular and hierarchical approach to learn policies for exploring 3D environments, called `Active Neural SLAM. Our approach leverages the strengths of both classical and learning-based methods, by using analytical path planners with learned SLAM module, and global and local policies. The use of learning provides flexibility with respect to input modalities (in the SLAM module), leverages structural regularities of the world (in global policies), and provides robustness to errors in state estimation (in local policies). Such use of learning within each module retains its benefits, while at the same time, hierarchical decomposition and modular training allow us to sidestep the high sample complexities associated with training end-to-end policies. Our experiments in visually and physically realistic simulated 3D environments demonstrate the effectiveness of our approach over past learning and geometry-based approaches. The proposed model can also be easily transferred to the PointGoal task and was the winning entry of the CVPR 2019 Habitat PointGoal Navigation Challenge.
This study proposes a privacy-preserving Visual SLAM framework for estimating camera poses and performing bundle adjustment with mixed line and point clouds in real time. Previous studies have proposed localization methods to estimate a camera pose using a line-cloud map for a single image or a reconstructed point cloud. These methods offer a scene privacy protection against the inversion attacks by converting a point cloud to a line cloud, which reconstruct the scene images from the point cloud. However, they are not directly applicable to a video sequence because they do not address computational efficiency. This is a critical issue to solve for estimating camera poses and performing bundle adjustment with mixed line and point clouds in real time. Moreover, there has been no study on a method to optimize a line-cloud map of a server with a point cloud reconstructed from a client video because any observation points on the image coordinates are not available to prevent the inversion attacks, namely the reversibility of the 3D lines. The experimental results with synthetic and real data show that our Visual SLAM framework achieves the intended privacy-preserving formation and real-time performance using a line-cloud map.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا