Do you want to publish a course? Click here

Modulating Curie Temperature and Magnetic Anisotropy in Nanoscale Layered Cr_{2}Te_{3} Films: Implications for Room-Temperature Spintronics

300   0   0.0 ( 0 )
 Added by Young Jun Chang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nanoscale layered ferromagnets have demonstrated fascinating two-dimensional magnetism down to atomic layers, providing a peculiar playground of spin orders for investigating fundamental physics and spintronic applications. However, strategy for growing films with designed magnetic properties is not well established yet. Herein, we present a versatile method to control the Curie temperature (T_{C}) and magnetic anisotropy during growth of ultrathin Cr_{2}Te_{3} films. We demonstrate increase of the TC from 165 K to 310 K in sync with magnetic anisotropy switching from an out-of-plane orientation to an in-plane one, respectively, via controlling the Te source flux during film growth, leading to different c-lattice parameters while preserving the stoichiometries and thicknesses of the films. We attributed this modulation of magnetic anisotropy to the switching of the orbital magnetic moment, using X-ray magnetic circular dichroism analysis. We also inferred that different c-lattice constants might be responsible for the magnetic anisotropy change, supported by theoretical calculations. These findings emphasize the potential of ultrathin Cr_{2}Te_{3} films as candidates for developing room-temperature spintronics applications and similar growth strategies could be applicable to fabricate other nanoscale layered magnetic compounds.



rate research

Read More

133 - Y. Yuan , Y. Wang , K. Gao 2015
We have prepared the dilute magnetic semiconductor (DMS) InMnAs with different Mn concentrations by ion implantation and pulsed laser melting. The Curie temperature of the In1-xMnxAs epilayer depends on the Mn concentration x, reaching 82 K for x=0.105. The substitution of Mn ions at the Indium sites induces a compressive strain perpendicular to the InMnAs layer and a tensile strain along the in-plane direction. This gives rise to a large perpendicular magnetic anisotropy, which is often needed for the demonstration of electrical control of magnetization and for spin-transfer-torque induced magnetization reversal.
Layered iridates have been the subject of intense scrutiny on account of their unusually strong spin-orbit coupling, which opens up a narrow gap in a material that would otherwise be a metal. This insulating state is very sensitive to external perturbations. Here, we show that vertical compression at the nanoscale, delivered using the tip of a standard scanning probe microscope, is capable of inducing a five orders of magnitude change in the room temperature resistivity of Sr2IrO4. The extreme sensitivity of the electronic structure to anisotropic deformations opens up a new angle of interest on this material, and the giant and fully reversible perpendicular piezoresistance makes iridates a promising material for room temperature piezotronic devices.
Spintronics exploits the magnetoresistance effects to store or sense the magnetic information. Since the magnetoresistance strictly depends on the magnetic anisotropy of the system, it is fundamental to set a defined anisotropy to the system. Here, we investigate by means of vectorial Magneto-Optical Kerr Magnetometry (v-MOKE), half-metallic La0.67Sr0.33MnO3 (LSMO) thin films that exhibit at room temperature pure biaxial magnetic anisotropy if grown onto MgO (001) substrate with a thin SrTiO3 (STO) buffer. In this way, we can avoid unwanted uniaxial magnetic anisotropy contributions that may be detrimental for specific applications. The detailed study of the angular evolution of the magnetization reversal pathways, critical fields (coercivity and switching) allows for disclosing the origin of the magnetic anisotropy, which is magnetocrystalline in nature and shows four-fold symmetry at any temperature.
Facing the ever-growing demand for data storage will most probably require a new paradigm. Magnetic skyrmions are anticipated to solve this issue as they are arguably the smallest spin textures in magnetic thin films in nature. We designed cobalt-based multilayered thin films where the cobalt layer is sandwiched between two heavy metals providing additive interfacial Dzyaloshinskii-Moriya interactions, which reach about 2 mJ/m2 in the case of the Ir/Co/Pt multilayers. Using a magnetization-sensitive scanning x-ray transmission microscopy technique, we imaged magnetic bubble-like domains in these multilayers. The study of their behavir in magnetic field allows us to conclude that they are actually magnetic skyrmions stabilized by the Dzyaloshinsskii-Moriya interaction. This discoevry of stable skyrmions at room temperature in a technologically relevant material opens the way for device applications in a near future.
When comparing a set of La0.67Sr0.33MnO3 (LSMO) samples, the Curie temperature (TC) of the samples is an important figure of merit for the sample quality. Therefore, a reliable method to determine TC is required. Here, a method based on the analysis of the magnetization loops is proposed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا