Do you want to publish a course? Click here

Giant reversible nanoscale piezoresistance at room temperature in Sr2IrO4 thin films

126   0   0.0 ( 0 )
 Added by Xavier Marti
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Layered iridates have been the subject of intense scrutiny on account of their unusually strong spin-orbit coupling, which opens up a narrow gap in a material that would otherwise be a metal. This insulating state is very sensitive to external perturbations. Here, we show that vertical compression at the nanoscale, delivered using the tip of a standard scanning probe microscope, is capable of inducing a five orders of magnitude change in the room temperature resistivity of Sr2IrO4. The extreme sensitivity of the electronic structure to anisotropic deformations opens up a new angle of interest on this material, and the giant and fully reversible perpendicular piezoresistance makes iridates a promising material for room temperature piezotronic devices.



rate research

Read More

The resistance of chemically synthesized polypyrrole (PPy) thin films is investigated as a function of the pressure of various gases as well as of the film thickness. A physical, piezoresistive response is found to coexist with a chemical response if the gas is chemically active, like, e.g., oxygen. The piezoresistance is studied separately by exposing the films to the chemically inert gases such as nitrogen and argon. We observe that the character of the piezoresistive response is a function not only of the film thickness, but also of the pressure. Films of a thickness below 70 nm show a decreasing resistance as pressure is applied, while for thicker films, the piezoresistance is positive. Moreover, in some films of thickness of about 70 nm, the piezoresistive response changes from negative to positive as the gas pressure is increased above 500 mbars. This behavior is interpreted in terms of a total piezoresistance which is composed of a surface and a bulk component, each of which contributes in a characteristic way. These results suggest that in polypyrrole, chemical sensing and piezoresistivity can coexist, which needs to be kept in mind when interpreting resistive responses of such sensors.
Facing the ever-growing demand for data storage will most probably require a new paradigm. Magnetic skyrmions are anticipated to solve this issue as they are arguably the smallest spin textures in magnetic thin films in nature. We designed cobalt-based multilayered thin films where the cobalt layer is sandwiched between two heavy metals providing additive interfacial Dzyaloshinskii-Moriya interactions, which reach about 2 mJ/m2 in the case of the Ir/Co/Pt multilayers. Using a magnetization-sensitive scanning x-ray transmission microscopy technique, we imaged magnetic bubble-like domains in these multilayers. The study of their behavir in magnetic field allows us to conclude that they are actually magnetic skyrmions stabilized by the Dzyaloshinsskii-Moriya interaction. This discoevry of stable skyrmions at room temperature in a technologically relevant material opens the way for device applications in a near future.
Ferroelectricity at room temperature has been demonstrated in nanometer-thin quasi 2D croconic acid thin films, by the polarization hysteresis loop measurements in macroscopic capacitor geometry, along with observation and manipulation of the nanoscale domain structure by piezoresponse force microscopy. The fabrication of continuous thin films of the hydrogen-bonded croconic acid was achieved by the suppression of the thermal decomposition using low evaporation temperatures in high vacuum, combined with growth conditions far from thermal equilibrium. For nominal coverages >=20 nm, quasi 2D and polycrystalline films, with an average grain size of 50-100 nm and 3.5 nm roughness, can be obtained. Spontaneous ferroelectric domain structures of the thin films have been observed and appear to correlate with the grain patterns. The application of this solvent-free growth protocol may be a key to the development of flexible organic ferroelectric thin films for electronic applications.
The Weyl semimetal WTe2 and MoTe2 show great potential in generating large spin currents since they possess topologically-protected spin-polarized states and can carry a very large current density. In addition, the intrinsic noncentrosymmetry of WTe2 and MoTe2 endows with a unique property of crystal symmetry-controlled spin-orbit torques. An important question to be answered for developing spintronic devices is how spins relax in WTe2 and MoTe2. Here, we report a room-temperature spin relaxation time of 1.2 ns (0.4 ns) in WTe2 (MoTe2) thin film using the time-resolved Kerr rotation (TRKR). Based on ab initio calculation, we identify a mechanism of long-lived spin polarization resulting from a large spin splitting around the bottom of the conduction band, low electron-hole recombination rate and suppression of backscattering required by time-reversal and lattice symmetry operation. In addition, we find the spin polarization is firmly pinned along the strong internal out-of-plane magnetic field induced by large spin splitting. Our work provides an insight into the physical origin of long-lived spin polarization in Weyl semimetals which could be useful to manipulate spins for a long time at room temperature.
Chromia (Cr2O3) has been extensively explored for the purpose of developing widespread industrial applications, owing to the convergence of a variety of mechanical, physical and chemical properties in one single oxide material. Various methods have been used for large area synthesis of Cr2O3 films. However, for selective area growth and growth on thermally sensitive materials, laser-assisted chemical vapour deposition (LCVD) can be applied advantageously. Here we report on the growth of single layers of pure Cr2O3 onto sapphire substrates at room temperature by low pressure photolytic LCVD, using UV laser radiation and Cr(CO)6 as chromium precursor. The feasibility of the LCVD technique to access selective area deposition of chromia thin films is demonstrated. Best results were obtained for a laser fluence of 120 mJ cm-2 and a partial pressure ratio of O2 to Cr(CO)6 of 1.0. Samples grown with these experimental parameters are polycrystalline and their microstructure is characterised by a high density of particles whose size follows a lognormal distribution. Deposition rates of 0.1 nm s-1 and mean particle sizes of 1.85 {mu}m were measured for these films.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا