Do you want to publish a course? Click here

Reinforcement Learning for Emotional Text-to-Speech Synthesis with Improved Emotion Discriminability

68   0   0.0 ( 0 )
 Added by Rui Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Emotional text-to-speech synthesis (ETTS) has seen much progress in recent years. However, the generated voice is often not perceptually identifiable by its intended emotion category. To address this problem, we propose a new interactive training paradigm for ETTS, denoted as i-ETTS, which seeks to directly improve the emotion discriminability by interacting with a speech emotion recognition (SER) model. Moreover, we formulate an iterative training strategy with reinforcement learning to ensure the quality of i-ETTS optimization. Experimental results demonstrate that the proposed i-ETTS outperforms the state-of-the-art baselines by rendering speech with more accurate emotion style. To our best knowledge, this is the first study of reinforcement learning in emotional text-to-speech synthesis.



rate research

Read More

140 - Ye Jia , Yu Zhang , Ron J. Weiss 2018
We describe a neural network-based system for text-to-speech (TTS) synthesis that is able to generate speech audio in the voice of many different speakers, including those unseen during training. Our system consists of three independently trained components: (1) a speaker encoder network, trained on a speaker verification task using an independent dataset of noisy speech from thousands of speakers without transcripts, to generate a fixed-dimensional embedding vector from seconds of reference speech from a target speaker; (2) a sequence-to-sequence synthesis network based on Tacotron 2, which generates a mel spectrogram from text, conditioned on the speaker embedding; (3) an auto-regressive WaveNet-based vocoder that converts the mel spectrogram into a sequence of time domain waveform samples. We demonstrate that the proposed model is able to transfer the knowledge of speaker variability learned by the discriminatively-trained speaker encoder to the new task, and is able to synthesize natural speech from speakers that were not seen during training. We quantify the importance of training the speaker encoder on a large and diverse speaker set in order to obtain the best generalization performance. Finally, we show that randomly sampled speaker embeddings can be used to synthesize speech in the voice of novel speakers dissimilar from those used in training, indicating that the model has learned a high quality speaker representation.
Text-to-speech synthesis (TTS) has witnessed rapid progress in recent years, where neural methods became capable of producing audios with high naturalness. However, these efforts still suffer from two types of latencies: (a) the {em computational latency} (synthesizing time), which grows linearly with the sentence length even with parallel approaches, and (b) the {em input latency} in scenarios where the input text is incrementally generated (such as in simultaneous translation, dialog generation, and assistive technologies). To reduce these latencies, we devise the first neural incremental TTS approach based on the recently proposed prefix-to-prefix framework. We synthesize speech in an online fashion, playing a segment of audio while generating the next, resulting in an $O(1)$ rather than $O(n)$ latency.
Emotional state of a speaker is found to have significant effect in speech production, which can deviate speech from that arising from neutral state. This makes identifying speakers with different emotions a challenging task as generally the speaker models are trained using neutral speech. In this work, we propose to overcome this problem by creation of emotion invariant speaker embedding. We learn an extractor network that maps the test embeddings with different emotions obtained using i-vector based system to an emotion invariant space. The resultant test embeddings thus become emotion invariant and thereby compensate the mismatch between various emotional states. The studies are conducted using four different emotion classes from IEMOCAP database. We obtain an absolute improvement of 2.6% in accuracy for speaker identification studies using emotion invariant speaker embedding against average speaker model based framework with different emotions.
We describe a sequence-to-sequence neural network which directly generates speech waveforms from text inputs. The architecture extends the Tacotron model by incorporating a normalizing flow into the autoregressive decoder loop. Output waveforms are modeled as a sequence of non-overlapping fixed-length blocks, each one containing hundreds of samples. The interdependencies of waveform samples within each block are modeled using the normalizing flow, enabling parallel training and synthesis. Longer-term dependencies are handled autoregressively by conditioning each flow on preceding blocks.This model can be optimized directly with maximum likelihood, with-out using intermediate, hand-designed features nor additional loss terms. Contemporary state-of-the-art text-to-speech (TTS) systems use a cascade of separately learned models: one (such as Tacotron) which generates intermediate features (such as spectrograms) from text, followed by a vocoder (such as WaveRNN) which generates waveform samples from the intermediate features. The proposed system, in contrast, does not use a fixed intermediate representation, and learns all parameters end-to-end. Experiments show that the proposed model generates speech with quality approaching a state-of-the-art neural TTS system, with significantly improved generation speed.
127 - Chi Han , Mingxuan Wang , Heng Ji 2021
Having numerous potential applications and great impact, end-to-end speech translation (ST) has long been treated as an independent task, failing to fully draw strength from the rapid advances of its sibling - text machine translation (MT). With text and audio inputs represented differently, the modality gap has rendered MT data and its end-to-end models incompatible with their ST counterparts. In observation of this obstacle, we propose to bridge this representation gap with Chimera. By projecting audio and text features to a common semantic representation, Chimera unifies MT and ST tasks and boosts the performance on ST benchmarks, MuST-C and Augmented Librispeech, to a new state-of-the-art. Specifically, Chimera obtains 27.1 BLEU on MuST-C EN-DE, improving the SOTA by a +1.9 BLEU margin. Further experimental analyses demonstrate that the shared semantic space indeed conveys common knowledge between these two tasks and thus paves a new way for augmenting training resources across modalities. Code, data, and resources are available at https://github.com/Glaciohound/Chimera-ST.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا