Do you want to publish a course? Click here

Incremental Text-to-Speech Synthesis with Prefix-to-Prefix Framework

293   0   0.0 ( 0 )
 Added by Mingbo Ma
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Text-to-speech synthesis (TTS) has witnessed rapid progress in recent years, where neural methods became capable of producing audios with high naturalness. However, these efforts still suffer from two types of latencies: (a) the {em computational latency} (synthesizing time), which grows linearly with the sentence length even with parallel approaches, and (b) the {em input latency} in scenarios where the input text is incrementally generated (such as in simultaneous translation, dialog generation, and assistive technologies). To reduce these latencies, we devise the first neural incremental TTS approach based on the recently proposed prefix-to-prefix framework. We synthesize speech in an online fashion, playing a segment of audio while generating the next, resulting in an $O(1)$ rather than $O(n)$ latency.



rate research

Read More

We describe a sequence-to-sequence neural network which directly generates speech waveforms from text inputs. The architecture extends the Tacotron model by incorporating a normalizing flow into the autoregressive decoder loop. Output waveforms are modeled as a sequence of non-overlapping fixed-length blocks, each one containing hundreds of samples. The interdependencies of waveform samples within each block are modeled using the normalizing flow, enabling parallel training and synthesis. Longer-term dependencies are handled autoregressively by conditioning each flow on preceding blocks.This model can be optimized directly with maximum likelihood, with-out using intermediate, hand-designed features nor additional loss terms. Contemporary state-of-the-art text-to-speech (TTS) systems use a cascade of separately learned models: one (such as Tacotron) which generates intermediate features (such as spectrograms) from text, followed by a vocoder (such as WaveRNN) which generates waveform samples from the intermediate features. The proposed system, in contrast, does not use a fixed intermediate representation, and learns all parameters end-to-end. Experiments show that the proposed model generates speech with quality approaching a state-of-the-art neural TTS system, with significantly improved generation speed.
Simultaneous translation, which translates sentences before they are finished, is useful in many scenarios but is notoriously difficult due to word-order differences. While the conventional seq-to-seq framework is only suitable for full-sentence translation, we propose a novel prefix-to-prefix framework for simultaneous translation that implicitly learns to anticipate in a single translation model. Within this framework, we present a very simple yet surprisingly effective wait-k policy trained to generate the target sentence concurrently with the source sentence, but always k words behind. Experiments show our strategy achieves low latency and reasonable quality (compared to full-sentence translation) on 4 directions: zh<->en and de<->en.
In Mandarin text-to-speech (TTS) system, the front-end text processing module significantly influences the intelligibility and naturalness of synthesized speech. Building a typical pipeline-based front-end which consists of multiple individual components requires extensive efforts. In this paper, we proposed a unified sequence-to-sequence front-end model for Mandarin TTS that converts raw texts to linguistic features directly. Compared to the pipeline-based front-end, our unified front-end can achieve comparable performance in polyphone disambiguation and prosody word prediction, and improve intonation phrase prediction by 0.0738 in F1 score. We also implemented the unified front-end with Tacotron and WaveRNN to build a Mandarin TTS system. The synthesized speech by that got a comparable MOS (4.38) with the pipeline-based front-end (4.37) and close to human recordings (4.49).
We present an experimental dataset, Basic Dataset for Sorani Kurdish Automatic Speech Recognition (BD-4SK-ASR), which we used in the first attempt in developing an automatic speech recognition for Sorani Kurdish. The objective of the project was to develop a system that automatically could recognize simple sentences based on the vocabulary which is used in grades one to three of the primary schools in the Kurdistan Region of Iraq. We used CMUSphinx as our experimental environment. We developed a dataset to train the system. The dataset is publicly available for non-commercial use under the CC BY-NC-SA 4.0 license.
Simultaneous speech-to-text translation is widely useful in many scenarios. The conventional cascaded approach uses a pipeline of streaming ASR followed by simultaneous MT, but suffers from error propagation and extra latency. To alleviate these issues, recent efforts attempt to directly translate the source speech into target text simultaneously, but this is much harder due to the combination of two separate tasks. We instead propose a new paradigm with the advantages of both cascaded and end-to-end approaches. The key idea is to use two separate, but synchronized, decoders on streaming ASR and direct speech-to-text translation (ST), respectively, and the intermediate results of ASR guide the decoding policy of (but is not fed as input to) ST. During training time, we use multitask learning to jointly learn these two tasks with a shared encoder. En-to-De and En-to-Es experiments on the MuSTC dataset demonstrate that our proposed technique achieves substantially better translation quality at similar levels of latency.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا