No Arabic abstract
Formal Methods for the Informal Engineer (FMIE) was a workshop held at the Broad Institute of MIT and Harvard in 2021 to explore the potential role of verified software in the biomedical software ecosystem. The motivation for organizing FMIE was the recognition that the life sciences and medicine are undergoing a transition from being passive consumers of software and AI/ML technologies to fundamental drivers of new platforms, including those which will need to be mission and safety-critical. Drawing on conversations leading up to and during the workshop, we make five concrete recommendations to help software leaders organically incorporate tools, techniques, and perspectives from formal methods into their project planning and development trajectories.
In Software Product Line Engineering (SPLE), a portfolio of similar systems is developed from a shared set of software assets. Claimed benefits of SPLE include reductions in the portfolio size, cost of software development and time to production, as well as improvements in the quality of the delivered systems. Yet, despite these benefits, SPLE is still in the early adoption stage. We believe that automated approaches, tools and techniques that provide better support for SPLE activities can further facilitate its adoption in practice and increase its benefits. To promote work in this area, the FMSPLE16 workshop focuses on automated analysis and formal methods, which can (1) lead to a further increase in development productivity and reduction in maintenance costs associated with management of the SPLE artifacts, and (2) provide proven guarantees for the correctness and quality of the delivered systems.
This volume contains the proceedings of F-IDE 2019, the fifth international workshop on Formal Integrated Development Environment, which was held on October 7, 2019 in Porto, Portugal, as part of FM19, the 3rd World Congress on Formal Methods. High levels of safety, security and privacy standards require the use of formal methods to specify and develop compliant software (sub)systems. Any standard comes with an assessment process, which requires a complete documentation of the application in order to ease the justification of design choices and the review of code and proofs. Thus tools are needed for handling specifications, program constructs and verification artifacts. The aim of the F-IDE workshop is to provide a forum for presenting and discussing research efforts as well as experience returns on design, development and usage of formal IDE aiming at making formal methods easier for both specialists and non-specialists.
This volume contains the proceedings of F-IDE 2021, the sixth international workshop on Formal Integrated Development Environment, which was held online on May 24-25, 2021, as part of NFM21, the 13th NASA Formal Methods Symposium. High levels of safety, security and privacy standards require the use of formal methods to specify and develop compliant software (sub)systems. Any standard comes with an assessment process, which requires a complete documentation of the application in order to ease the justification of design choices and the review of code and proofs. Thus tools are needed for handling specifications, program constructs and verification artifacts. The aim of the F-IDE workshop is to provide a forum for presenting and discussing research efforts as well as experience returns on design, development and usage of formal IDE aiming at making formal methods more accessible for both specialists and non-specialists.
Formal Verification (FV) and Machine Learning (ML) can seem incompatible due to their opposite mathematical foundations and their use in real-life problems: FV mostly relies on discrete mathematics and aims at ensuring correctness; ML often relies on probabilistic models and consists of learning patterns from training data. In this paper, we postulate that they are complementary in practice, and explore how ML helps FV in its classical approaches: static analysis, model-checking, theorem-proving, and SAT solving. We draw a landscape of the current practice and catalog some of the most prominent uses of ML inside FV tools, thus offering a new perspective on FV techniques that can help researchers and practitioners to better locate the possible synergies. We discuss lessons learned from our work, point to possible improvements and offer visions for the future of the domain in the light of the science of software and systems modeling.
Industrial automation systems (IAS) need to be highly dependable; they should not merely function as expected but also do so in a reliable, safe, and secure manner. Formal methods are mathematical techniques that can greatly aid in developing dependable systems and can be used across all phases of the system development life cycle (SDLC), including requirements engineering, system design and implementation, verification and validation (testing), maintenance, and even documentation. This state-of-the-art survey reports existing formal approaches for creating more dependable IAS, focusing on static formal methods that are used before a system is completely implemented. We categorize surveyed works based on the phases of the SDLC, allowing us to identify research gaps and promising future directions for each phase.