Do you want to publish a course? Click here

Distributed Picard Iteration

65   0   0.0 ( 0 )
 Added by Mario Figueiredo
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The Picard iteration is widely used to find fixed points of locally contractive (LC) maps. This paper extends the Picard iteration to distributed settings; specifically, we assume the map of which the fixed point is sought to be the average of individual (not necessarily LC) maps held by a set of agents linked by a sparse communication network. An additional difficulty is that the LC map is not assumed to come from an underlying optimization problem, which prevents exploiting strong global properties such as convexity or Lipschitzianity. Yet, we propose a distributed algorithm and prove its convergence, in fact showing that it maintains the linear rate of the standard Picard iteration for the average LC map. As another contribution, our proof imports tools from perturbation theory of linear operators, which, to the best of our knowledge, had not been used before in the theory of distributed computation.



rate research

Read More

In recent work, we proposed a distributed Picard iteration (DPI) that allows a set of agents, linked by a communication network, to find a fixed point of a locally contractive (LC) map that is the average of individual maps held by said agents. In this work, we build upon the DPI and its local linear convergence (LLC) guarantees to make several contributions. We show that Sangers algorithm for principal component analysis (PCA) corresponds to the iteration of an LC map that can be written as the average of local maps, each map known to each agent holding a subset of the data. Similarly, we show that a variant of the expectation-maximization (EM) algorithm for parameter estimation from noisy and faulty measurements in a sensor network can be written as the iteration of an LC map that is the average of local maps, each available at just one node. Consequently, via the DPI, we derive two distributed algorithms - distributed EM and distributed PCA - whose LLC guarantees follow from those that we proved for the DPI. The verification of the LC condition for EM is challenging, as the underlying operator depends on random samples, thus the LC condition is of probabilistic nature.
Recent years have witnessed the surge of asynchronous parallel (async-parallel) iterative algorithms due to problems involving very large-scale data and a large number of decision variables. Because of asynchrony, the iterates are computed with outdated information, and the age of the outdated information, which we call delay, is the number of times it has been updated since its creation. Almost all recent works prove convergence under the assumption of a finite maximum delay and set their stepsize parameters accordingly. However, the maximum delay is practically unknown. This paper presents convergence analysis of an async-parallel method from a probabilistic viewpoint, and it allows for large unbounded delays. An explicit formula of stepsize that guarantees convergence is given depending on delays statistics. With $p+1$ identical processors, we empirically measured that delays closely follow the Poisson distribution with parameter $p$, matching our theoretical model, and thus the stepsize can be set accordingly. Simulations on both convex and nonconvex optimization problems demonstrate the validness of our analysis and also show that the existing maximum-delay induced stepsize is too conservative, often slowing down the convergence of the algorithm.
We investigate fast and communication-efficient algorithms for the classic problem of minimizing a sum of strongly convex and smooth functions that are distributed among $n$ different nodes, which can communicate using a limited number of bits. Most previous communication-efficient approaches for this problem are limited to first-order optimization, and therefore have emph{linear} dependence on the condition number in their communication complexity. We show that this dependence is not inherent: communication-efficient methods can in fact have sublinear dependence on the condition number. For this, we design and analyze the first communication-efficient distributed variants of preconditioned gradient descent for Generalized Linear Models, and for Newtons method. Our results rely on a new technique for quantizing both the preconditioner and the descent direction at each step of the algorithms, while controlling their convergence rate. We also validate our findings experimentally, showing fast convergence and reduced communication.
Stochastic gradient methods (SGMs) are predominant approaches for solving stochastic optimization. On smooth nonconvex problems, a few acceleration techniques have been applied to improve the convergence rate of SGMs. However, little exploration has been made on applying a certain acceleration technique to a stochastic subgradient method (SsGM) for nonsmooth nonconvex problems. In addition, few efforts have been made to analyze an (accelerated) SsGM with delayed derivatives. The information delay naturally happens in a distributed system, where computing workers do not coordinate with each other. In this paper, we propose an inertial proximal SsGM for solving nonsmooth nonconvex stochastic optimization problems. The proposed method can have guaranteed convergence even with delayed derivative information in a distributed environment. Convergence rate results are established to three classes of nonconvex problems: weakly-convex nonsmooth problems with a convex regularizer, composite nonconvex problems with a nonsmooth convex regularizer, and smooth nonconvex problems. For each problem class, the convergence rate is $O(1/K^{frac{1}{2}})$ in the expected value of the gradient norm square, for $K$ iterations. In a distributed environment, the convergence rate of the proposed method will be slowed down by the information delay. Nevertheless, the slow-down effect will decay with the number of iterations for the latter two problem classes. We test the proposed method on three applications. The numerical results clearly demonstrate the advantages of using the inertial-based acceleration. Furthermore, we observe higher parallelization speed-up in asynchronous updates over the synchronous counterpart, though the former uses delayed derivatives.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا