No Arabic abstract
Stochastic gradient methods (SGMs) are predominant approaches for solving stochastic optimization. On smooth nonconvex problems, a few acceleration techniques have been applied to improve the convergence rate of SGMs. However, little exploration has been made on applying a certain acceleration technique to a stochastic subgradient method (SsGM) for nonsmooth nonconvex problems. In addition, few efforts have been made to analyze an (accelerated) SsGM with delayed derivatives. The information delay naturally happens in a distributed system, where computing workers do not coordinate with each other. In this paper, we propose an inertial proximal SsGM for solving nonsmooth nonconvex stochastic optimization problems. The proposed method can have guaranteed convergence even with delayed derivative information in a distributed environment. Convergence rate results are established to three classes of nonconvex problems: weakly-convex nonsmooth problems with a convex regularizer, composite nonconvex problems with a nonsmooth convex regularizer, and smooth nonconvex problems. For each problem class, the convergence rate is $O(1/K^{frac{1}{2}})$ in the expected value of the gradient norm square, for $K$ iterations. In a distributed environment, the convergence rate of the proposed method will be slowed down by the information delay. Nevertheless, the slow-down effect will decay with the number of iterations for the latter two problem classes. We test the proposed method on three applications. The numerical results clearly demonstrate the advantages of using the inertial-based acceleration. Furthermore, we observe higher parallelization speed-up in asynchronous updates over the synchronous counterpart, though the former uses delayed derivatives.
Stochastic gradient methods (SGMs) are the predominant approaches to train deep learning models. The adapti
We consider the distributed optimization problem where $n$ agents each possessing a local cost function, collaboratively minimize the average of the $n$ cost functions over a connected network. Assuming stochastic gradient information is available, we study a distributed stochastic gradient algorithm, called exact diffusion with adaptive stepsizes (EDAS) adapted from the Exact Diffusion method and NIDS and perform a non-asymptotic convergence analysis. We not only show that EDAS asymptotically achieves the same network independent convergence rate as centralized stochastic gradient descent (SGD) for minimizing strongly convex and smooth objective functions, but also characterize the transient time needed for the algorithm to approach the asymptotic convergence rate, which behaves as $K_T=mathcal{O}left(frac{n}{1-lambda_2}right)$, where $1-lambda_2$ stands for the spectral gap of the mixing matrix. To the best of our knowledge, EDAS achieves the shortest transient time when the average of the $n$ cost functions is strongly convex and each cost function is smooth. Numerical simulations further corroborate and strengthen the obtained theoretical results.
In this work, we propose a distributed algorithm for stochastic non-convex optimization. We consider a worker-server architecture where a set of $K$ worker nodes (WNs) in collaboration with a server node (SN) jointly aim to minimize a global, potentially non-convex objective function. The objective function is assumed to be the sum of local objective functions available at each WN, with each node having access to only the stochastic samples of its local objective function. In contrast to the existing approaches, we employ a momentum based single loop distributed algorithm which eliminates the need of computing large batch size gradients to achieve variance reduction. We propose two algorithms one with adaptive and the other with non-adaptive learning rates. We show that the proposed algorithms achieve the optimal computational complexity while attaining linear speedup with the number of WNs. Specifically, the algorithms reach an $epsilon$-stationary point $x_a$ with $mathbb{E}| abla f(x_a) | leq tilde{O}(K^{-1/3}T^{-1/2} + K^{-1/3}T^{-1/3})$ in $T$ iterations, thereby requiring $tilde{O}(K^{-1} epsilon^{-3})$ gradient computations at each WN. Moreover, our approach does not assume identical data distributions across WNs making the approach general enough for federated learning applications.
We study distributed stochastic gradient (D-SG) method and its accelerated variant (D-ASG) for solving decentralized strongly convex stochastic optimization problems where the objective function is distributed over several computational units, lying on a fixed but arbitrary connected communication graph, subject to local communication constraints where noisy estimates of the gradients are available. We develop a framework which allows to choose the stepsize and the momentum parameters of these algorithms in a way to optimize performance by systematically trading off the bias, variance, robustness to gradient noise and dependence to network effects. When gradients do not contain noise, we also prove that distributed accelerated methods can emph{achieve acceleration}, requiring $mathcal{O}(kappa log(1/varepsilon))$ gradient evaluations and $mathcal{O}(kappa log(1/varepsilon))$ communications to converge to the same fixed point with the non-accelerated variant where $kappa$ is the condition number and $varepsilon$ is the target accuracy. To our knowledge, this is the first acceleration result where the iteration complexity scales with the square root of the condition number in the context of emph{primal} distributed inexact first-order methods. For quadratic functions, we also provide finer performance bounds that are tight with respect to bias and variance terms. Finally, we study a multistage version of D-ASG with parameters carefully varied over stages to ensure exact $mathcal{O}(-k/sqrt{kappa})$ linear decay in the bias term as well as optimal $mathcal{O}(sigma^2/k)$ in the variance term. We illustrate through numerical experiments that our approach results in practical algorithms that are robust to gradient noise and that can outperform existing methods.
We analyze the convergence of decentralized consensus algorithm with delayed gradient information across the network. The nodes in the network privately hold parts of the objective function and collaboratively solve for the consensus optimal solution of the total objective while they can only communicate with their immediate neighbors. In real-world networks, it is often difficult and sometimes impossible to synchronize the nodes, and therefore they have to use stale gradient information during computations. We show that, as long as the random delays are bounded in expectation and a proper diminishing step size policy is employed, the iterates generated by decentralized gradient descent method converge to a consensual optimal solution. Convergence rates of both objective and consensus are derived. Numerical results on a number of synthetic problems and real-world seismic tomography datasets in decentralized sensor networks are presented to show the performance of the method.