No Arabic abstract
Recently, significant progress has been made in single-view depth estimation thanks to increasingly large and diverse depth datasets. However, these datasets are largely limited to specific application domains (e.g. indoor, autonomous driving) or static in-the-wild scenes due to hardware constraints or technical limitations of 3D reconstruction. In this paper, we introduce the first depth dataset DynOcc consisting of dynamic in-the-wild scenes. Our approach leverages the occlusion cues in these dynamic scenes to infer depth relationships between points of selected video frames. To achieve accurate occlusion detection and depth order estimation, we employ a novel occlusion boundary detection, filtering and thinning scheme followed by a robust foreground/background classification method. In total our DynOcc dataset contains 22M depth pairs out of 91K frames from a diverse set of videos. Using our dataset we achieved state-of-the-art results measured in weighted human disagreement rate (WHDR). We also show that the inferred depth maps trained with DynOcc can preserve sharper depth boundaries.
Single-view depth prediction is a fundamental problem in computer vision. Recently, deep learning methods have led to significant progress, but such methods are limited by the available training data. Current datasets based on 3D sensors have key limitations, including indoor-only images (NYU), small numbers of training examples (Make3D), and sparse sampling (KITTI). We propose to use multi-view Internet photo collections, a virtually unlimited data source, to generate training data via modern structure-from-motion and multi-view stereo (MVS) methods, and present a large depth dataset called MegaDepth based on this idea. Data derived from MVS comes with its own challenges, including noise and unreconstructable objects. We address these challenges with new data cleaning methods, as well as automatically augmenting our data with ordinal depth relations generated using semantic segmentation. We validate the use of large amounts of Internet data by showing that models trained on MegaDepth exhibit strong generalization-not only to novel scenes, but also to other diverse datasets including Make3D, KITTI, and DIW, even when no images from those datasets are seen during training.
Depth estimation is a fundamental issue in 4-D light field processing and analysis. Although recent supervised learning-based light field depth estimation methods have significantly improved the accuracy and efficiency of traditional optimization-based ones, these methods rely on the training over light field data with ground-truth depth maps which are challenging to obtain or even unavailable for real-world light field data. Besides, due to the inevitable gap (or domain difference) between real-world and synthetic data, they may suffer from serious performance degradation when generalizing the models trained with synthetic data to real-world data. By contrast, we propose an unsupervised learning-based method, which does not require ground-truth depth as supervision during training. Specifically, based on the basic knowledge of the unique geometry structure of light field data, we present an occlusion-aware strategy to improve the accuracy on occlusion areas, in which we explore the angular coherence among subsets of the light field views to estimate initial depth maps, and utilize a constrained unsupervised loss to learn their corresponding reliability for final depth prediction. Additionally, we adopt a multi-scale network with a weighted smoothness loss to handle the textureless areas. Experimental results on synthetic data show that our method can significantly shrink the performance gap between the previous unsupervised method and supervised ones, and produce depth maps with comparable accuracy to traditional methods with obviously reduced computational cost. Moreover, experiments on real-world datasets show that our method can avoid the domain shift problem presented in supervised methods, demonstrating the great potential of our method.
Accurate estimation of three-dimensional human skeletons from depth images can provide important metrics for healthcare applications, especially for biomechanical gait analysis. However, there exist inherent problems associated with depth images captured from a single view. The collected data is greatly affected by occlusions where only partial surface data can be recorded. Furthermore, depth images of human body exhibit heterogeneous characteristics with viewpoint changes, and the estimated poses under local coordinate systems are expected to go through equivariant rotations. Most existing pose estimation models are sensitive to both issues. To address this, we propose a novel approach for cross-view generalization with an occlusion-invariant semi-supervised learning framework built upon a novel rotation-equivariant backbone. Our model was trained with real-world data from a single view and unlabelled synthetic data from multiple views. It can generalize well on the real-world data from all the other unseen views. Our approach has shown superior performance on gait analysis on our ICL-Gait dataset compared to other state-of-the-arts and it can produce more convincing keypoints on ITOP dataset, than its provided ground truth.
In self-supervised monocular depth estimation, the depth discontinuity and motion objects artifacts are still challenging problems. Existing self-supervised methods usually utilize a single view to train the depth estimation network. Compared with static views, abundant dynamic properties between video frames are beneficial to refined depth estimation, especially for dynamic objects. In this work, we propose a novel self-supervised joint learning framework for depth estimation using consecutive frames from monocular and stereo videos. The main idea is using an implicit depth cue extractor which leverages dynamic and static cues to generate useful depth proposals. These cues can predict distinguishable motion contours and geometric scene structures. Furthermore, a new high-dimensional attention module is introduced to extract clear global transformation, which effectively suppresses uncertainty of local descriptors in high-dimensional space, resulting in a more reliable optimization in learning framework. Experiments demonstrate that the proposed framework outperforms the state-of-the-art(SOTA) on KITTI and Make3D datasets.
We present an algorithm to estimate depth in dynamic video scenes. We propose to learn and infer depth in videos from appearance, motion, occlusion boundaries, and geometric context of the scene. Using our method, depth can be estimated from unconstrained videos with no requirement of camera pose estimation, and with significant background/foreground motions. We start by decomposing a video into spatio-temporal regions. For each spatio-temporal region, we learn the relationship of depth to visual appearance, motion, and geometric classes. Then we infer the depth information of new scenes using piecewise planar parametrization estimated within a Markov random field (MRF) framework by combining appearance to depth learned mappings and occlusion boundary guided smoothness constraints. Subsequently, we perform temporal smoothing to obtain temporally consistent depth maps. To evaluate our depth estimation algorithm, we provide a novel dataset with ground truth depth for outdoor video scenes. We present a thorough evaluation of our algorithm on our new dataset and the publicly available Make3d static image dataset.