No Arabic abstract
In self-supervised monocular depth estimation, the depth discontinuity and motion objects artifacts are still challenging problems. Existing self-supervised methods usually utilize a single view to train the depth estimation network. Compared with static views, abundant dynamic properties between video frames are beneficial to refined depth estimation, especially for dynamic objects. In this work, we propose a novel self-supervised joint learning framework for depth estimation using consecutive frames from monocular and stereo videos. The main idea is using an implicit depth cue extractor which leverages dynamic and static cues to generate useful depth proposals. These cues can predict distinguishable motion contours and geometric scene structures. Furthermore, a new high-dimensional attention module is introduced to extract clear global transformation, which effectively suppresses uncertainty of local descriptors in high-dimensional space, resulting in a more reliable optimization in learning framework. Experiments demonstrate that the proposed framework outperforms the state-of-the-art(SOTA) on KITTI and Make3D datasets.
We tackle the problem of unsupervised synthetic-to-realistic domain adaptation for single image depth estimation. An essential building block of single image depth estimation is an encoder-decoder task network that takes RGB images as input and produces depth maps as output. In this paper, we propose a novel training strategy to force the task network to learn domain invariant representations in a self-supervised manner. Specifically, we extend self-supervised learning from traditional representation learning, which works on images from a single domain, to domain invariant representation learning, which works on images from two different domains by utilizing an image-to-image translation network. Firstly, we use our bidirectional image-to-image translation network to transfer domain-specific styles between synthetic and real domains. This style transfer operation allows us to obtain similar images from the different domains. Secondly, we jointly train our task network and Siamese network with the same images from the different domains to obtain domain invariance for the task network. Finally, we fine-tune the task network using labeled synthetic and unlabeled real-world data. Our training strategy yields improved generalization capability in the real-world domain. We carry out an extensive evaluation on two popular datasets for depth estimation, KITTI and Make3D. The results demonstrate that our proposed method outperforms the state-of-the-art both qualitatively and quantitatively. The source code and model weights will be made available.
In the recent years, many methods demonstrated the ability of neural networks tolearn depth and pose changes in a sequence of images, using only self-supervision as thetraining signal. Whilst the networks achieve good performance, the often over-lookeddetail is that due to the inherent ambiguity of monocular vision they predict depth up to aunknown scaling factor. The scaling factor is then typically obtained from the LiDARground truth at test time, which severely limits practical applications of these methods.In this paper, we show that incorporating prior information about the camera configu-ration and the environment, we can remove the scale ambiguity and predict depth directly,still using the self-supervised formulation and not relying on any additional sensors.
Point clouds provide a compact and efficient representation of 3D shapes. While deep neural networks have achieved impressive results on point cloud learning tasks, they require massive amounts of manually labeled data, which can be costly and time-consuming to collect. In this paper, we leverage 3D self-supervision for learning downstream tasks on point clouds with fewer labels. A point cloud can be rotated in infinitely many ways, which provides a rich label-free source for self-supervision. We consider the auxiliary task of predicting rotations that in turn leads to useful features for other tasks such as shape classification and 3D keypoint prediction. Using experiments on ShapeNet and ModelNet, we demonstrate that our approach outperforms the state-of-the-art. Moreover, features learned by our model are complementary to other self-supervised methods and combining them leads to further performance improvement.
Depth estimation, as a necessary clue to convert 2D images into the 3D space, has been applied in many machine vision areas. However, to achieve an entire surrounding 360-degree geometric sensing, traditional stereo matching algorithms for depth estimation are limited due to large noise, low accuracy, and strict requirements for multi-camera calibration. In this work, for a unified surrounding perception, we introduce panoramic images to obtain larger field of view. We extend PADENet first appeared in our previous conference work for outdoor scene understanding, to perform panoramic monocular depth estimation with a focus for indoor scenes. At the same time, we improve the training process of the neural network adapted to the characteristics of panoramic images. In addition, we fuse traditional stereo matching algorithm with deep learning methods and further improve the accuracy of depth predictions. With a comprehensive variety of experiments, this research demonstrates the effectiveness of our schemes aiming for indoor scene perception.
Previous methods on estimating detailed human depth often require supervised training with `ground truth depth data. This paper presents a self-supervised method that can be trained on YouTube videos without known depth, which makes training data collection simple and improves the generalization of the learned network. The self-supervised learning is achieved by minimizing a photo-consistency loss, which is evaluated between a video frame and its neighboring frames warped according to the estimated depth and the 3D non-rigid motion of the human body. To solve this non-rigid motion, we first estimate a rough SMPL model at each video frame and compute the non-rigid body motion accordingly, which enables self-supervised learning on estimating the shape details. Experiments demonstrate that our method enjoys better generalization and performs much better on data in the wild.