No Arabic abstract
A theoretical investigation has been carried out to examine the ion-acoustic shock waves (IASHWs) in a magnetized degenerate quantum plasma system containing inertialess ultra-relativistically degenerate electrons, and inertial non-relativistic positively charged heavy and light ions. The Burgers equation is derived by employing reductive perturbation method. It can be seen that under consideration of non-relativistic positively charged heavy and light ions, the plasma model supports only positive electrostatic shock structure. It is also observed that the charge state and number density of the non-relativistic heavy and light ions enhance the amplitude of IASHWs, and the steepness of the shock profile is decreased with ion kinematic viscosity ($eta$). The findings of our present investigation will be helpful in understanding the nonlinear propagation of IASHWs in white dwarfs and neutron stars.
A self-consistent relativistic two-fluid model is proposed for one-dimensional electron-ion plasma dynamics. A multiple scales perturbation technique is employed, leading to an evolution equation for the wave envelope, in the form of a nonlinear Schrodinger type equation (NLSE). The inclusion of relativistic effects is shown to introduce density-dependent factors, not present in the non-relativistic case - in the conditions for modulational instability. The role of relativistic effects on the linear dispersion laws and on envelope soliton solutions of the NLSE is discussed.
An experimental investigation of the propagation characteristics of shock waves in an inhomogeneous dusty plasma is carried out in the Dusty Plasma Experimental (DPEx) device. A homogeneous dusty plasma, made up of poly-dispersive kaolin particles, is initially formed in a DC glow discharge Argon plasma by maintaining a dynamic equilibrium of the pumping speed and the gas feeding rate. Later, an equilibrium density inhomogeneity in the dust fluid is created by introducing an imbalance in the original dynamic equilibrium. Non-linear wave structures are then excited in this inhomogeneous dusty plasma by a sudden compression in the dust fluid. These structures are identified as shock waves and their amplitude and width profiles are measured spatially. The amplitude of a shock structure is seen to increase whereas the width broadens as it propagates down a decreasing dust density profile. A modified-KdV-Burger equation is derived and used to provide a theoretical explanation of the results including the power law scaling of the changes in the amplitude and width as a function of the background density.
We have studied the modulation instability of obliquely propagating ion acoustic waves in a collisionless magnetized warm plasma consisting of warm adiabatic ions and two different species of electrons at different temperatures. We have derived a nonlinear Schr{o}dinger equation using the standard reductive perturbation method to describe the nonlinear amplitude modulation of ion acoustic wave satisfying the dispersion relation of ion acoustic wave propagating at an arbitrary angle to the direction of the external uniform static magnetic field. We have investigated the correspondence between two nonlinear Schr{o}dinger equations $-$ one describes the amplitude modulation of ion acoustic waves propagating along any arbitrary direction to the direction of the magnetic field and other describes the amplitude modulation of ion acoustic waves propagating along the direction of the magnetic field. We have derived the instability condition and the maximum growth rate of instability of the modulated ion acoustic wave. We have seen that the region of existence of maximum growth rate of instability decreases with increasing values of the magnetic field intensity whereas the region of existence of the maximum growth rate of instability increases with increasing $cos theta$, where $theta$ is the angle of propagation of the ion acoustic wave with the external uniform static magnetic field. Again, the maximum growth rate of instability increases with increasing $cos theta$ and also this maximum growth rate of instability increases with increasing $beta_{e}$ upto a critical value of the wave number, where $beta_{e}$ is the parameter associated with the nonthermal distribution of hotter electron species.
The head-on collision of ion-acoustic solitary waves in a collisionless plasma with cold ions and Boltzmann electrons is studied. It is shown that solitary waves of sufficiently large amplitudes do not retain their identity after a collision. Their amplitudes decrease and their forms change. Dependences of amplitudes of the potential and densities of ions and electrons after a head-on collision of identical solitary waves on their initial amplitude are presented.
The nonlinear theory of two-dimensional ion-acoustic (IA) solitary waves and shocks (SWS) is revisited in a dissipative quantum plasma. The effects of dispersion, caused by the charge separation of electrons and ions and the quantum force associated with the Bohm potential for degenerate electrons, as well as, the dissipation due to the ion kinematic viscosity are considered. Using the reductive perturbation technique, a Kadomtsev-Petviashvili Burgers (KPB)-type equation, which governs the evolution of small-amplitude SWS in quantum plasmas, is derived, and its different solutions are obtained and analyzed. It is shown that the KPB equation can admit either compressive or rarefactive SWS according to when $Hlessgtr2/3$, or the particle number density satisfies $n_0gtrless 1.3times10^{31}$ cm$^{-3}$, where $H$ is the ratio of the electron plasmon energy to the Fermi energy densities. Furthermore, the properties of large-amplitude stationary shocks are studied numerically in the case when the wave dispersion due to charge separation is negligible. It is also shown that a transition from monotonic to oscillatory shocks occurs by the effects of the quantum parameter $H$.