No Arabic abstract
Cloth-Changing person re-identification (CC-ReID) aims at matching the same person across different locations over a long-duration, e.g., over days, and therefore inevitably meets challenge of changing clothing. In this paper, we focus on handling well the CC-ReID problem under a more challenging setting, i.e., just from a single image, which enables high-efficiency and latency-free pedestrian identify for real-time surveillance applications. Specifically, we introduce Gait recognition as an auxiliary task to drive the Image ReID model to learn cloth-agnostic representations by leveraging personal unique and cloth-independent gait information, we name this framework as GI-ReID. GI-ReID adopts a two-stream architecture that consists of a image ReID-Stream and an auxiliary gait recognition stream (Gait-Stream). The Gait-Stream, that is discarded in the inference for high computational efficiency, acts as a regulator to encourage the ReID-Stream to capture cloth-invariant biometric motion features during the training. To get temporal continuous motion cues from a single image, we design a Gait Sequence Prediction (GSP) module for Gait-Stream to enrich gait information. Finally, a high-level semantics consistency over two streams is enforced for effective knowledge regularization. Experiments on multiple image-based Cloth-Changing ReID benchmarks, e.g., LTCC, PRCC, Real28, and VC-Clothes, demonstrate that GI-ReID performs favorably against the state-of-the-arts. Codes are available at https://github.com/jinx-USTC/GI-ReID.
Person re-identification (Re-ID) aims to match a target person across camera views at different locations and times. Existing Re-ID studies focus on the short-term cloth-consistent setting, under which a person re-appears in different camera views with the same outfit. A discriminative feature representation learned by existing deep Re-ID models is thus dominated by the visual appearance of clothing. In this work, we focus on a much more difficult yet practical setting where person matching is conducted over long-duration, e.g., over days and months and therefore inevitably under the new challenge of changing clothes. This problem, termed Long-Term Cloth-Changing (LTCC) Re-ID is much understudied due to the lack of large scale datasets. The first contribution of this work is a new LTCC dataset containing people captured over a long period of time with frequent clothing changes. As a second contribution, we propose a novel Re-ID method specifically designed to address the cloth-changing challenge. Specifically, we consider that under cloth-changes, soft-biometrics such as body shape would be more reliable. We, therefore, introduce a shape embedding module as well as a cloth-elimination shape-distillation module aiming to eliminate the now unreliable clothing appearance features and focus on the body shape information. Extensive experiments show that superior performance is achieved by the proposed model on the new LTCC dataset. The code and dataset will be available at https://naiq.github.io/LTCC_Perosn_ReID.html.
Person reidentification (ReID) is a very hot research topic in machine learning and computer vision, and many person ReID approaches have been proposed; however, most of these methods assume that the same person has the same clothes within a short time interval, and thus their visual appearance must be similar. However, in an actual surveillance environment, a given person has a great probability of changing clothes after a long time span, and they also often take different personal belongings with them. When the existing person ReID methods are applied in this type of case, almost all of them fail. To date, only a few works have focused on the cloth-changing person ReID task, but since it is very difficult to extract generalized and robust features for representing people with different clothes, their performances need to be improved. Moreover, visual-semantic information is often ignored. To solve these issues, in this work, a novel multigranular visual-semantic embedding algorithm (MVSE) is proposed for cloth-changing person ReID, where visual semantic information and human attributes are embedded into the network, and the generalized features of human appearance can be well learned to effectively solve the problem of clothing changes. Specifically, to fully represent a person with clothing changes, a multigranular feature representation scheme (MGR) is employed to focus on the unchanged part of the human, and then a cloth desensitization network (CDN) is designed to improve the feature robustness of the approach for the person with different clothing, where different high-level human attributes are fully utilized. Moreover, to further solve the issue of pose changes and occlusion under different camera perspectives, a partially semantically aligned network (PSA) is proposed to obtain the visual-semantic information that is used to align the human attributes.
Person re-identification (ReID) is now an active research topic for AI-based video surveillance applications such as specific person search, but the practical issue that the target person(s) may change clothes (clothes inconsistency problem) has been overlooked for long. For the first time, this paper systematically studies this problem. We first overcome the difficulty of lack of suitable dataset, by collecting a small yet representative real dataset for testing whilst building a large realistic synthetic dataset for training and deeper studies. Facilitated by our new datasets, we are able to conduct various interesting new experiments for studying the influence of clothes inconsistency. We find that changing clothes makes ReID a much harder problem in the sense of bringing difficulties to learning effective representations and also challenges the generalization ability of previous ReID models to identify persons with unseen (new) clothes. Representative existing ReID models are adopted to show informative results on such a challenging setting, and we also provide some preliminary efforts on improving the robustness of existing models on handling the clothes inconsistency issue in the data. We believe that this study can be inspiring and helpful for encouraging more researches in this direction. The dataset is available on the project website: https://wanfb.github.io/dataset.html.
We introduce an adaptive L2 regularization mechanism in the setting of person re-identification. In the literature, it is common practice to utilize hand-picked regularization factors which remain constant throughout the training procedure. Unlike existing approaches, the regularization factors in our proposed method are updated adaptively through backpropagation. This is achieved by incorporating trainable scalar variables as the regularization factors, which are further fed into a scaled hard sigmoid function. Extensive experiments on the Market-1501, DukeMTMC-reID and MSMT17 datasets validate the effectiveness of our framework. Most notably, we obtain state-of-the-art performance on MSMT17, which is the largest dataset for person re-identification. Source code is publicly available at https://github.com/nixingyang/AdaptiveL2Regularization.
While attributes have been widely used for person re-identification (Re-ID) which aims at matching the same person images across disjoint camera views, they are used either as extra features or for performing multi-task learning to assist the image-image matching task. However, how to find a set of person images according to a given attribute description, which is very practical in many surveillance applications, remains a rarely investigated cross-modality matching problem in person Re-ID. In this work, we present this challenge and formulate this task as a joint space learning problem. By imposing an attribute-guided attention mechanism for images and a semantic consistent adversary strategy for attributes, each modality, i.e., images and attributes, successfully learns semantically correlated concepts under the guidance of the other. We conducted extensive experiments on three attribute datasets and demonstrated that the proposed joint space learning method is so far the most effective method for the attribute-image cross-modality person Re-ID problem.