Do you want to publish a course? Click here

Adversarial Attribute-Image Person Re-identification

352   0   0.0 ( 0 )
 Added by Zhou Yin
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

While attributes have been widely used for person re-identification (Re-ID) which aims at matching the same person images across disjoint camera views, they are used either as extra features or for performing multi-task learning to assist the image-image matching task. However, how to find a set of person images according to a given attribute description, which is very practical in many surveillance applications, remains a rarely investigated cross-modality matching problem in person Re-ID. In this work, we present this challenge and formulate this task as a joint space learning problem. By imposing an attribute-guided attention mechanism for images and a semantic consistent adversary strategy for attributes, each modality, i.e., images and attributes, successfully learns semantically correlated concepts under the guidance of the other. We conducted extensive experiments on three attribute datasets and demonstrated that the proposed joint space learning method is so far the most effective method for the attribute-image cross-modality person Re-ID problem.



rate research

Read More

Person re-identification (re-ID) plays an important role in applications such as public security and video surveillance. Recently, learning from synthetic data, which benefits from the popularity of synthetic data engine, have achieved remarkable performance. However, existing synthetic datasets are in small size and lack of diversity, which hinders the development of person re-ID in real-world scenarios. To address this problem, firstly, we develop a large-scale synthetic data engine, the salient characteristic of this engine is controllable. Based on it, we build a large-scale synthetic dataset, which are diversified and customized from different attributes, such as illumination and viewpoint. Secondly, we quantitatively analyze the influence of dataset attributes on re-ID system. To our best knowledge, this is the first attempt to explicitly dissect person re-ID from the aspect of attribute on synthetic dataset. Comprehensive experiments help us have a deeper understanding of the fundamental problems in person re-ID. Our research also provides useful insights for dataset building and future practical usage.
Despite the great progress of person re-identification (ReID) with the adoption of Convolutional Neural Networks, current ReID models are opaque and only outputs a scalar distance between two persons. There are few methods providing users semantically understandable explanations for why two persons are the same one or not. In this paper, we propose a post-hoc method, named Attribute-guided Metric Distillation (AMD), to explain existing ReID models. This is the first method to explore attributes to answer: 1) what and where the attributes make two persons different, and 2) how much each attribute contributes to the difference. In AMD, we design a pluggable interpreter network for target models to generate quantitative contributions of attributes and visualize accurate attention maps of the most discriminative attributes. To achieve this goal, we propose a metric distillation loss by which the interpreter learns to decompose the distance of two persons into components of attributes with knowledge distilled from the target model. Moreover, we propose an attribute prior loss to make the interpreter generate attribute-guided attention maps and to eliminate biases caused by the imbalanced distribution of attributes. This loss can guide the interpreter to focus on the exclusive and discriminative attributes rather than the large-area but common attributes of two persons. Comprehensive experiments show that the interpreter can generate effective and intuitive explanations for varied models and generalize well under cross-domain settings. As a by-product, the accuracy of target models can be further improved with our interpreter.
Inspired by the effectiveness of adversarial training in the area of Generative Adversarial Networks we present a new approach for learning feature representations in person re-identification. We investigate different types of bias that typically occur in re-ID scenarios, i.e., pose, body part and camera view, and propose a general approach to address them. We introduce an adversarial strategy for controlling bias, named Bias-controlled Adversarial framework (BCA), with two complementary branches to reduce or to enhance bias-related features. The results and comparison to the state of the art on different benchmarks show that our framework is an effective strategy for person re-identification. The performance improvements are in both full and partial views of persons.
Person Re-identification (re-id) faces two major challenges: the lack of cross-view paired training data and learning discriminative identity-sensitive and view-invariant features in the presence of large pose variations. In this work, we address both problems by proposing a novel deep person image generation model for synthesizing realistic person images conditional on the pose. The model is based on a generative adversarial network (GAN) designed specifically for pose normalization in re-id, thus termed pose-normalization GAN (PN-GAN). With the synthesized images, we can learn a new type of deep re-id feature free of the influence of pose variations. We show that this feature is strong on its own and complementary to features learned with the original images. Importantly, under the transfer learning setting, we show that our model generalizes well to any new re-id dataset without the need for collecting any training data for model fine-tuning. The model thus has the potential to make re-id model truly scalable.
This article studies the domain adaptation problem in person re-identification (re-ID) under a learning via translation framework, consisting of two components, 1) translating the labeled images from the source to the target domain in an unsupervised manner, 2) learning a re-ID model using the translated images. The objective is to preserve the underlying human identity information after image translation, so that translated images with labels are effective for feature learning on the target domain. To this end, we propose a similarity preserving generative adversarial network (SPGAN) and its end-to-end trainable version, eSPGAN. Both aiming at similarity preserving, SPGAN enforces this property by heuristic constraints, while eSPGAN does so by optimally facilitating the re-ID model learning. More specifically, SPGAN separately undertakes the two components in the learning via translation framework. It first preserves two types of unsupervised similarity, namely, self-similarity of an image before and after translation, and domain-dissimilarity of a translated source image and a target image. It then learns a re-ID model using existing networks. In comparison, eSPGAN seamlessly integrates image translation and re-ID model learning. During the end-to-end training of eSPGAN, re-ID learning guides image translation to preserve the underlying identity information of an image. Meanwhile, image translation improves re-ID learning by providing identity-preserving training samples of the target domain style. In the experiment, we show that identities of the fake images generated by SPGAN and eSPGAN are well preserved. Based on this, we report the new state-of-the-art domain adaptation results on two large-scale person re-ID datasets.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا