Do you want to publish a course? Click here

Interrupting vaccination policies can greatly spread SARS-CoV-2 and enhance mortality from COVID-19 disease: the AstraZeneca case for France and Italy

124   0   0.0 ( 0 )
 Added by Valerio Lucarini
 Publication date 2021
  fields Physics Biology
and research's language is English




Ask ChatGPT about the research

Several European countries have suspended the inoculation of the AstraZeneca vaccine out of suspicion of causing deep vein thrombosis. In this letter we report some Fermi estimates performed using a stochastic model aimed at making a risk-benefit analysis of the interruption of the delivery of the AstraZeneca vaccine in France and Italy. Our results clearly show that excess deaths due to the interruption of the vaccination campaign injections largely overrun those due to thrombosis even in worst case scenarios of frequency and gravity of the vaccine side effects.



rate research

Read More

The COVID-19 pandemic poses challenges for continuing economic activity while reducing health risks. While these challenges can be mitigated through testing, testing budget is often limited. Here we study how institutions, such as nursing homes, should utilize a fixed test budget for early detection of an outbreak. Using an extended network-SEIR model, we show that given a certain budget of tests, it is generally better to test smaller subgroups of the population frequently than to test larger groups but less frequently. The numerical results are consistent with an analytical expression we derive for the size of the outbreak at detection in an exponential spread model. Our work provides a simple guideline for institutions: distribute your total tests over several batches instead of using them all at once. We expect that in the appropriate scenarios, this easy-to-implement policy recommendation will lead to earlier detection and better mitigation of local COVID-19 outbreaks.
While the SARS-CoV-2 keeps spreading world-wide, comparing its evolution across different nations is a timely challenge of both theoretical and practical importance. The large variety of dissimilar and country-dependent epidemiological factors, in fact, makes extremely difficult to understand their influence on the epidemic trends within a unique and coherent framework. We present a geometric framework to characterize, in an integrated and low-dimensional fashion, the epidemic plume-like trajectories traced by the infection rate, $I$, and the fatality rate, $D$, in the $(I,D)$ plane. Our analysis enables the definition of an epidemiometric system based on three geometric observables rating the SARS-CoV-2 pandemic events via scales analogous to those for the magnitude and the intensity of seismic events. Being exquisitely geometric, our framework can be applied to classify other epidemic data and secondary waves, raising the possibility of designing epidemic alerts or early warning systems to enhance public and governmental responses to a rapidly emerging outbreak.
We apply optimal control theory to a generalized SEIR-type model. The proposed system has three controls, representing social distancing, preventive means, and treatment measures to combat the spread of the COVID-19 pandemic. We analyze such optimal control problem with respect to real data transmission in Italy. Our results show the appropriateness of the model, in particular with respect to the number of quarantined/hospitalized (confirmed and infected) and recovered individuals. Considering the Pontryagin controls, we show how in a perfect world one could have drastically diminish the number of susceptible, exposed, infected, quarantined/hospitalized, and death individuals, by increasing the population of insusceptible/protected.
84 - Tommy Nyberg 2021
Objective: To evaluate the relationship between coronavirus disease 2019 (COVID-19) diagnosis with SARS-CoV-2 variant B.1.1.7 (also known as Variant of Concern 202012/01) and the risk of hospitalisation compared to diagnosis with wildtype SARS-CoV-2 variants. Design: Retrospective cohort, analysed using stratified Cox regression. Setting: Community-based SARS-CoV-2 testing in England, individually linked with hospitalisation data. Participants: 839,278 laboratory-confirmed COVID-19 patients, of whom 36,233 had been hospitalised within 14 days, tested between 23rd November 2020 and 31st January 2021 and analysed at a laboratory with an available TaqPath assay that enables assessment of S-gene target failure (SGTF). SGTF is a proxy test for the B.1.1.7 variant. Patient data were stratified by age, sex, ethnicity, deprivation, region of residence, and date of positive test. Main outcome measures: Hospitalisation between 1 and 14 days after the first positive SARS-CoV-2 test. Results: 27,710 of 592,409 SGTF patients (4.7%) and 8,523 of 246,869 non-SGTF patients (3.5%) had been hospitalised within 1-14 days. The stratum-adjusted hazard ratio (HR) of hospitalisation was 1.52 (95% confidence interval [CI] 1.47 to 1.57) for COVID-19 patients infected with SGTF variants, compared to those infected with non-SGTF variants. The effect was modified by age (P<0.001), with HRs of 0.93-1.21 for SGTF compared to non-SGTF patients below age 20 years, 1.29 in those aged 20-29, and 1.45-1.65 in age groups 30 years or older. Conclusions: The results suggest that the risk of hospitalisation is higher for individuals infected with the B.1.1.7 variant compared to wildtype SARS-CoV-2, likely reflecting a more severe disease. The higher severity may be specific to adults above the age of 30.
The ongoing COVID-19 pandemic has created a global crisis of massive scale. Prior research indicates that human mobility is one of the key factors involved in viral spreading. Indeed, in a connected planet, rapid world-wide spread is enabled by long-distance air-, land- and sea-transportation among countries and continents, and subsequently fostered by commuting trips within densely populated cities. While early travel restrictions contribute to delayed disease spread, their utility is much reduced if the disease has a long incubation period or if there is asymptomatic transmission. Given the lack of vaccines, public health officials have mainly relied on non-pharmaceutical interventions, including social distancing measures, curfews, and stay-at-home orders. Here we study the impact of city organization on its susceptibility to disease spread, and amenability to interventions. Cities can be classified according to their mobility in a spectrum between compact-hierarchical and decentralized-sprawled. Our results show that even though hierarchical cities are more susceptible to the rapid spread of epidemics, their organization makes mobility restrictions quite effective. Conversely, sprawled cities are characterized by a much slower initial spread, but are less responsive to mobility restrictions. These findings hold globally across cities in diverse geographical locations and a broad range of sizes. Our empirical measurements are confirmed by a simulation of COVID-19 spread in urban areas through a compartmental model. These results suggest that investing resources on early monitoring and prompt ad-hoc interventions in more vulnerable cities may prove most helpful in containing and reducing the impact of present and future pandemics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا