No Arabic abstract
The COVID-19 pandemic poses challenges for continuing economic activity while reducing health risks. While these challenges can be mitigated through testing, testing budget is often limited. Here we study how institutions, such as nursing homes, should utilize a fixed test budget for early detection of an outbreak. Using an extended network-SEIR model, we show that given a certain budget of tests, it is generally better to test smaller subgroups of the population frequently than to test larger groups but less frequently. The numerical results are consistent with an analytical expression we derive for the size of the outbreak at detection in an exponential spread model. Our work provides a simple guideline for institutions: distribute your total tests over several batches instead of using them all at once. We expect that in the appropriate scenarios, this easy-to-implement policy recommendation will lead to earlier detection and better mitigation of local COVID-19 outbreaks.
The dynamics of epidemics depend on how peoples behavior changes during an outbreak. The impact of this effect due to control interventions on the morbidity rate is obvious and supported by numerous studies based on SIR-type models. However, the existing models do not explain the difference in outbreak profiles in countries with different intrinsic socio-cultural features and are rather specific for describing the complex dynamics of an outbreak. A system of models of the COVID-19 pandemic is proposed, combining the dynamics of social stress described by the tools of sociophysics8 with classical epidemic models. Even the combination of a dynamic SIR model with the classic triad of stages of general adaptation syndrome, Alarm-Resistance-Exhaustion, makes it possible to describe the available statistics for various countries of the world with a high degree of accuracy. The conceptualization of social stress leads to the division of the vulnerable population into different groups according to behavior mode, which can be tracked in detail. The sets of kinetic constants corresponding to optimal fit of model to data clearly characterize the society ability to focus efforts on protection against pandemic and keep this concentration for a considerable time. Such characterization can further help in the development of management strategies specific to a particular society: country, region, or social group.
Group testing allows saving chemical reagents, analysis time, and costs, by testing pools of samples instead of individual samples. We introduce a class of group testing protocols with small dilution, suited to operate even at high prevalence ($5%-10%$), and maximizing the fraction of samples classified positive/negative within the first round of tests. Precisely, if the tested group has exactly one positive sample then the protocols identify it without further individual tests. The protocols also detect the presence of two or more positives in the group, in which case a second round could be applied to identify the positive individuals. With a prevalence of $5%$ and maximum dilution 6, with 100 tests we classify 242 individuals, $92%$ of them in one round and $8%$ requiring a second individual test. In comparison, the Dorfmans scheme can test 229 individuals with 100 tests, with a second round for $18.5%$ of the individuals.
With a two-layer contact-dispersion model and data in China, we analyze the cost-effectiveness of three types of antiepidemic measures for COVID-19: regular epidemiological control, local social interaction control, and inter-city travel restriction. We find that: 1) intercity travel restriction has minimal or even negative effect compared to the other two at the national level; 2) the time of reaching turning point is independent of the current number of cases, and only related to the enforcement stringency of epidemiological control and social interaction control measures; 3) strong enforcement at the early stage is the only opportunity to maximize both antiepidemic effectiveness and cost-effectiveness; 4) mediocre stringency of social interaction measures is the worst choice. Subsequently, we cluster countries/regions into four groups based on their control measures and provide situation assessment and policy suggestions for each group.
Several European countries have suspended the inoculation of the AstraZeneca vaccine out of suspicion of causing deep vein thrombosis. In this letter we report some Fermi estimates performed using a stochastic model aimed at making a risk-benefit analysis of the interruption of the delivery of the AstraZeneca vaccine in France and Italy. Our results clearly show that excess deaths due to the interruption of the vaccination campaign injections largely overrun those due to thrombosis even in worst case scenarios of frequency and gravity of the vaccine side effects.
In this paper, we propose a continuous-time stochastic intensity model, namely, two-phase dynamic contagion process(2P-DCP), for modelling the epidemic contagion of COVID-19 and investigating the lockdown effect based on the dynamic contagion model introduced by Dassios and Zhao (2011). It allows randomness to the infectivity of individuals rather than a constant reproduction number as assumed by standard models. Key epidemiological quantities, such as the distribution of final epidemic size and expected epidemic duration, are derived and estimated based on real data for various regions and countries. The associated time lag of the effect of intervention in each country or region is estimated. Our results are consistent with the incubation time of COVID-19 found by recent medical study. We demonstrate that our model could potentially be a valuable tool in the modeling of COVID-19. More importantly, the proposed model of 2P-DCP could also be used as an important tool in epidemiological modelling as this type of contagion models with very simple structures is adequate to describe the evolution of regional epidemic and worldwide pandemic.