Do you want to publish a course? Click here

Cosmology of complex scalar dark matter: interplay of self-scattering and annihilation

75   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The cosmology of a standard model (SM) gauge singlet complex scalar dark matter (DM), stabilized by a reflection symmetry, is studied including all renormalizable interactions that preserve the reflection symmetry but can break the larger global U(1) symmetry of DM number. We find an interesting interplay of the ensuing DM self-scatterings and annihilations in generating the present DM density, and possible particle-antiparticle asymmetry in the DM sector. The role of DM self-scatterings in determining its present density and composition is a novel phenomenon. The simultaneous presence of the self-scatterings and annihilations is required to obtain a non-zero asymmetry, which otherwise vanishes due to unitarity sum rules.



rate research

Read More

218 - L. Bergstrom 2013
A brief overview is given about some issues in current astroparticle physics, focusing on the dark matter (DM) problem, where the connection to LHC physics is particularly strong. New data from the Planck satellite has made the evidence in favour of the existence of DM even stronger. The favourite, though not the only, candidates for cosmological DM, weakly interacting massive particles (WIMPs), are being probed by a variety of experiments - direct detection through scattering in terrestrial detectors, indirect detection by observing products of annihilation of DM in the Galaxy, and finally searches at accelerators such as the LHC. The field is in the interesting situation that all of these search methods are reaching sensitivities where signals of DM may plausibly soon be found, and a vast array of models will be probed in the next few years. Of course, expectations for a positive signature are high, which calls for caution regarding false alarms. Some of the presently puzzling and partly conflicting pieces of evidence for DM detection are discussed as well as expectations for the future.
We perform a systematic study of the phenomenology associated to models where the dark matter consists in the neutral component of a scalar SU(2)_L n-uplet, up to n=7. If one includes only the pure gauge induced annihilation cross-sections it is known that such particles provide good dark matter candidates, leading to the observed dark matter relic abundance for a particular value of their mass around the TeV scale. We show that these values actually become ranges of values -which we determine- if one takes into account the annihilations induced by the various scalar couplings appearing in these models. This leads to predictions for both direct and indirect detection signatures as a function of the dark matter mass within these ranges. Both can be largely enhanced by the quartic coupling contributions. We also explain how, if one adds right-handed neutrinos to the scalar doublet case, the results of this analysis allow to have altogether a viable dark matter candidate, successful generation of neutrino masses, and leptogenesis in a particularly minimal way with all new physics at the TeV scale.
Phenomenological implications of the Mimetic Tensor-Vector-Scalar theory (MiTeVeS) are studied. The theory is an extension of the vector field model of mimetic dark matter, where a scalar field is also incorporated, and it is known to be free from ghost instability. In the absence of interactions between the scalar field and the vector field, the obtained cosmological solution corresponds to the General theory of Relativity (GR) with a minimally-coupled scalar field. However, including an interaction term between the scalar field and the vector field yields interesting dynamics. There is a shift symmetry for the scalar field with a flat potential, and the conserved Noether current, which is associated with the symmetry, behaves as a dark matter component. Consequently, the solution contains a cosmological constant, dark matter and a stiff matter fluid. Breaking the shift symmetry with a non-flat potential gives a natural interaction between dark energy and dark matter.
Composite dark matter is a natural setting for implementing inelastic dark matter - the O(100 keV) mass splitting arises from spin-spin interactions of constituent fermions. In models where the constituents are charged under an axial U(1) gauge symmetry that also couples to the Standard Model quarks, dark matter scatters inelastically off Standard Model nuclei and can explain the DAMA/LIBRA annual modulation signal. This article describes the early Universe cosmology of a minimal implementation of a composite inelastic dark matter model where the dark matter is a meson composed of a light and a heavy quark. The synthesis of the constituent quarks into dark mesons and baryons results in several qualitatively different configurations of the resulting dark matter hadrons depending on the relative mass scales in the system.
182 - Mathias Garny , Jan Heisig 2018
Non-thermalized dark matter is a cosmologically valid alternative to the paradigm of weakly interacting massive particles. For dark matter belonging to a $Z_2$-odd sector that contains in addition a thermalized mediator particle, dark matter production proceeds in general via both the freeze-in and superWIMP mechanism. We highlight their interplay and emphasize the connection to long-lived particles at colliders. For the explicit example of a colored t-channel mediator model we map out the entire accessible parameter space, cornered by bounds from the LHC, big bang nucleosynthesis and Lyman-alpha forest observations, respectively. We discuss prospects for the HL- and HE-LHC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا