Do you want to publish a course? Click here

The Cosmology of Composite Inelastic Dark Matter

141   0   0.0 ( 0 )
 Added by Daniele Alves
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Composite dark matter is a natural setting for implementing inelastic dark matter - the O(100 keV) mass splitting arises from spin-spin interactions of constituent fermions. In models where the constituents are charged under an axial U(1) gauge symmetry that also couples to the Standard Model quarks, dark matter scatters inelastically off Standard Model nuclei and can explain the DAMA/LIBRA annual modulation signal. This article describes the early Universe cosmology of a minimal implementation of a composite inelastic dark matter model where the dark matter is a meson composed of a light and a heavy quark. The synthesis of the constituent quarks into dark mesons and baryons results in several qualitatively different configurations of the resulting dark matter hadrons depending on the relative mass scales in the system.



rate research

Read More

Peaking consistently in June for nearly eleven years, the annual modulation signal reported by DAMA/NaI and DAMA/LIBRA offers strong evidence for the identity of dark matter. DAMAs signal strongly suggest that dark matter inelastically scatters into an excited state split by O(100 keV). We propose that DAMA is observing hyperfine transitions of a composite dark matter particle. As an example, we consider a meson of a QCD-like sector, built out of constituent fermions whose spin-spin interactions break the degeneracy of the ground state. An axially coupled U(1) gauge boson that mixes kinetically with hypercharge induces inelastic hyperfine transitions of the meson dark matter that can explain the DAMA signal.
We consider a composite model where both the Higgs and a complex scalar $chi$, which is the dark matter (DM) candidate, arise as light pseudo Nambu-Goldstone bosons (pNGBs) from a strongly coupled sector with TeV scale confinement. The global symmetry structure is $SO(7)/SO(6)$, and the DM is charged under an exact $U(1)_{rm DM} subset SO(6)$ that ensures its stability. Depending on whether the $chi$ shift symmetry is respected or broken by the coupling of the top quark to the strong sector, the DM can be much lighter than the Higgs or have a weak-scale mass. Here we focus primarily on the latter possibility. We introduce the lowest-lying composite resonances and impose calculability of the scalar potential via generalized Weinberg sum rules. Compared to previous analyses of pNGB DM, the computation of the relic density is improved by fully accounting for the effects of the fermionic top partners. This plays a crucial role in relaxing the tension with the current DM direct detection constraints. The spectrum of resonances contains exotic top partners charged under the $U(1)_{rm DM}$, whose LHC phenomenology is analyzed. We identify a region of parameters with $f = 1.4; mathrm{TeV}$ and $200;mathrm{GeV} lesssim m_chi lesssim 400;mathrm{GeV}$ that satisfies all existing bounds. This DM candidate will be tested by XENON1T in the near future.
246 - L. Bergstrom 2013
A brief overview is given about some issues in current astroparticle physics, focusing on the dark matter (DM) problem, where the connection to LHC physics is particularly strong. New data from the Planck satellite has made the evidence in favour of the existence of DM even stronger. The favourite, though not the only, candidates for cosmological DM, weakly interacting massive particles (WIMPs), are being probed by a variety of experiments - direct detection through scattering in terrestrial detectors, indirect detection by observing products of annihilation of DM in the Galaxy, and finally searches at accelerators such as the LHC. The field is in the interesting situation that all of these search methods are reaching sensitivities where signals of DM may plausibly soon be found, and a vast array of models will be probed in the next few years. Of course, expectations for a positive signature are high, which calls for caution regarding false alarms. Some of the presently puzzling and partly conflicting pieces of evidence for DM detection are discussed as well as expectations for the future.
Light dark sectors in thermal contact with the Standard Model naturally produce the observed relic dark matter abundance and are the targets of a broad experimental search program. A key light dark sector model is the pseudo-Dirac fermion with a dark photon mediator. The dynamics of the fermionic excited states are often neglected. We consider scenarios in which a nontrivial abundance of excited states is produced and their subsequent de-excitation yields interesting electromagnetic signals in direct detection experiments. We study three mechanisms of populating the excited state: a primordial excited fraction, a component up-scattered in the sun, and a component up-scattered in the Earth. We find that the fractional abundance of primordial excited states is generically depleted to exponentially small fractions in the early universe. Nonetheless, this abundance can produce observable signals in current dark matter searches. MeV-scale dark matter with thermal cross sections and higher can be probed by down-scattering following excitation in the sun. Up-scatters of GeV-scale dark matter in the Earth can give rise to signals in current and upcoming terrestrial experiments and X-ray observations. We comment on the possible relevance of these scenarios to the recent excess in XENON1T.
Composite dark matter candidates, which can arise from new strongly-coupled sectors, are well-motivated and phenomenologically interesting, particularly in the context of asymmetric generation of the relic density. In this work, we employ lattice calculations to study the electromagnetic form factors of electroweak-neutral dark-matter baryons for a three-color, QCD-like theory with Nf = 2 and 6 degenerate fermions in the fundamental representation. We calculate the (connected) charge radius and anomalous magnetic moment, both of which can play a significant role for direct detection of composite dark matter. We find minimal Nf dependence in these quantities. We generate mass-dependent cross-sections for dark matter-nucleon interactions and use them in conjunction with experimental results from XENON100, excluding dark matter candidates of this type with masses below 10 TeV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا