No Arabic abstract
Spintronic diodes are emerging as disruptive candidates for impacting several technological applications ranging from the Internet of Things to Artificial Intelligence. In this letter, an overview of the recent achievements on spintronic diodes is briefly presented, underling the major breakthroughs that have led these devices to have the largest sensitivity measured up to date for a diode. For each class of spintronic diodes (passive, active, resonant, non-resonant), we indicate the remaining developments to improve the performances as well as the future directions. We also dedicate the last part of this perspective to new ideas for developing spintronic diodes in multiphysics systems by combining 2-dimensional materials and antiferromagnets.
The field of spin hydrodynamics aims to describe magnetization dynamics from a fluid perspective. For ferromagnetic materials, there is an exact mapping between the Landau-Lifshitz equation and a set of dispersive hydrodynamic equations. This analogy provides ample opportunities to explore novel magnetization dynamics and magnetization states that can lead to applications relying entirely upon magnetic materials, for example, long-distance transport of information. This article provides an overview of the theoretical foundations of spin hydrodynamics and their physical interpretation in the context of spin transport. We discuss other proposed applications for spin hydrodynamics as well as our view on challenges and future research directions.
Two-dimensional semiconductors are excellent candidates for next-generation electronics and optoelec-tronics thanks to their electrical properties and strong light-matter interaction. To fabricate devices with optimal electrical properties, it is crucial to have both high-quality semiconducting crystals and ideal con-tacts at metal-semiconductor interfaces. Thanks to the mechanical exfoliation of van der Waals crystals, atomically-thin high-quality single-crystals can easily be obtained in a laboratory. However, conventional metal deposition techniques can introduce chemical disorder and metal-induced mid-gap states that induce Fermi level pinning and can degrade the metal-semiconductor interfaces, resulting in poorly performing devices. In this article, we explore the electrical contact characteristics of Au-InSe and graphite-InSe van der Waals contacts, obtained by stacking mechanically exfoliated InSe flakes onto pre-patterned Au or graphite electrodes without the need of lithography or metal deposition. The high quality of the metal-semiconductor interfaces obtained by van der Waals contact allows to fabricate high-quality Schottky di-odes based on the Au-InSe Schottky barrier. Our experimental observation indicates that the contact barrier at the graphite-InSe interface is negligible due to the similar electron affinity of InSe and graphite, while the Au-InSe interfaces are dominated by a large Schottky barrier.
Spintronic technology is emerging as a direction for the hardware implementation of neurons and synapses of neuromorphic architectures. In particular, a single spintronic device can be used to implement the nonlinear activation function of neurons. Here, we propose how to implement spintronic neurons with a sigmoidal and ReLU-like activation functions. We then perform a numerical experiment showing the robustness of neural networks made by spintronic neurons all having different activation functions to emulate device-to-device variations in a possible hardware implementation of the network. Therefore, we consider a vanilla neural network implemented to recognize the categories of the Mixed National Institute of Standards and Technology database, and we show an average accuracy of 98.87 % in the test dataset which is very close to the 98.89% as obtained for the ideal case (all neurons have the same sigmoid activation function). Similar results are also obtained with neurons having a ReLU-like activation function.
In recent years, the field of antiferromagnetic spintronics has been substantially advanced. Electric-field control is a promising approach to achieving ultra-low power spintronic devices via suppressing Joule heating. In this article, cutting-edge research, including electric-field modulation of antiferromagnetic spintronic devices using strain, ionic liquids, dielectric materials, and electrochemical ionic migration, are comprehensively reviewed. Various emergent topics such as the Neel spin-orbit torque, chiral spintronics, topological antiferromagnetic spintronics, anisotropic magnetoresistance, memory devices, two-dimensional magnetism, and magneto-ionic modulation with respect to antiferromagnets are examined. In conclusion, we envision the possibility of realizing high-quality room-temperature antiferromagnetic tunnel junctions, antiferromagnetic spin logic devices, and artificial antiferromagnetic neurons. It is expected that this work provides an appropriate and forward-looking perspective that will promote the rapid development of this field.
Experiments and theory are reexamining how the laws of thermodynamics are expressed in a quantum world. Most quantum thermodynamics research is performed at sub-Kelvin temperatures to prevent thermal fluctuations from smearing the mesoscopic quantum engines discrete energy levels that mediate the asymmetric shuffling of electrons between the electrodes. Meanwhile, several groups report that building an electron-spin based implementation by placing the discrete spin states of paramagnetic centers between ferromagnetic electrodes can not only overcome this drawback, but also induce a net electrical power output despite an apparent thermal equilibrium. We illustrate this apparent thermodynamics conundrum through measurements on several devices of large output power, which endures beyond room temperature. Weve inserted the Co paramagnetic center in Co phthalocyanine molecules between electron spin-selecting Fe/C60 interfaces within vertical molecular nanojunctions. This device class behaves as a spintronically controlled switch of current flow, and of its direction. We observe dc current output over several hours, and output power as high as 450nW(24nW) at 40K(360K). This leapfrogs previous results, as well as other energy harvesting strategies involving a thermal gradient. Our data indicates that the output power is strongly altered when the partly fluctuating paramagnetic centers undergo a magnetic phase transition. This new conceptual ingredient in the spin engine can account for the devices operation beyond the boundaries of classical thermodynamics. Further clarifying the phenomenon and developing this technology could help accelerate the transition to clean energy.