Do you want to publish a course? Click here

DRANet: Disentangling Representation and Adaptation Networks for Unsupervised Cross-Domain Adaptation

83   0   0.0 ( 0 )
 Added by Seunghun Lee
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we present DRANet, a network architecture that disentangles image representations and transfers the visual attributes in a latent space for unsupervised cross-domain adaptation. Unlike the existing domain adaptation methods that learn associated features sharing a domain, DRANet preserves the distinctiveness of each domains characteristics. Our model encodes individual representations of content (scene structure) and style (artistic appearance) from both source and target images. Then, it adapts the domain by incorporating the transferred style factor into the content factor along with learnable weights specified for each domain. This learning framework allows bi-/multi-directional domain adaptation with a single encoder-decoder network and aligns their domain shift. Additionally, we propose a content-adaptive domain transfer module that helps retain scene structure while transferring style. Extensive experiments show our model successfully separates content-style factors and synthesizes visually pleasing domain-transferred images. The proposed method demonstrates state-of-the-art performance on standard digit classification tasks as well as semantic segmentation tasks.

rate research

Read More

Typical adversarial-training-based unsupervised domain adaptation methods are vulnerable when the source and target datasets are highly-complex or exhibit a large discrepancy between their data distributions. Recently, several Lipschitz-constraint-based methods have been explored. The satisfaction of Lipschitz continuity guarantees a remarkable performance on a target domain. However, they lack a mathematical analysis of why a Lipschitz constraint is beneficial to unsupervised domain adaptation and usually perform poorly on large-scale datasets. In this paper, we take the principle of utilizing a Lipschitz constraint further by discussing how it affects the error bound of unsupervised domain adaptation. A connection between them is built and an illustration of how Lipschitzness reduces the error bound is presented. A textbf{local smooth discrepancy} is defined to measure Lipschitzness of a target distribution in a pointwise way. When constructing a deep end-to-end model, to ensure the effectiveness and stability of unsupervised domain adaptation, three critical factors are considered in our proposed optimization strategy, i.e., the sample amount of a target domain, dimension and batchsize of samples. Experimental results demonstrate that our model performs well on several standard benchmarks. Our ablation study shows that the sample amount of a target domain, the dimension and batchsize of samples indeed greatly impact Lipschitz-constraint-based methods ability to handle large-scale datasets. Code is available at https://github.com/CuthbertCai/SRDA.
199 - Rui Wang , Zuxuan Wu , Zejia Weng 2021
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a fully-labeled source domain to a different unlabeled target domain. Most existing UDA methods learn domain-invariant feature representations by minimizing feature distances across domains. In this work, we build upon contrastive self-supervised learning to align features so as to reduce the domain discrepancy between training and testing sets. Exploring the same set of categories shared by both domains, we introduce a simple yet effective framework CDCL, for domain alignment. In particular, given an anchor image from one domain, we minimize its distances to cross-domain samples from the same class relative to those from different categories. Since target labels are unavailable, we use a clustering-based approach with carefully initialized centers to produce pseudo labels. In addition, we demonstrate that CDCL is a general framework and can be adapted to the data-free setting, where the source data are unavailable during training, with minimal modification. We conduct experiments on two widely used domain adaptation benchmarks, i.e., Office-31 and VisDA-2017, and demonstrate that CDCL achieves state-of-the-art performance on both datasets.
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a labeled source domain to a different unlabeled target domain. Most existing UDA methods focus on learning domain-invariant feature representation, either from the domain level or category level, using convolution neural networks (CNNs)-based frameworks. One fundamental problem for the category level based UDA is the production of pseudo labels for samples in target domain, which are usually too noisy for accurate domain alignment, inevitably compromising the UDA performance. With the success of Transformer in various tasks, we find that the cross-attention in Transformer is robust to the noisy input pairs for better feature alignment, thus in this paper Transformer is adopted for the challenging UDA task. Specifically, to generate accurate input pairs, we design a two-way center-aware labeling algorithm to produce pseudo labels for target samples. Along with the pseudo labels, a weight-sharing triple-branch transformer framework is proposed to apply self-attention and cross-attention for source/target feature learning and source-target domain alignment, respectively. Such design explicitly enforces the framework to learn discriminative domain-specific and domain-invariant representations simultaneously. The proposed method is dubbed CDTrans (cross-domain transformer), and it provides one of the first attempts to solve UDA tasks with a pure transformer solution. Extensive experiments show that our proposed method achieves the best performance on Office-Home, VisDA-2017, and DomainNet datasets.
Unsupervised Domain Adaptation (UDA) aims to generalize the knowledge learned from a well-labeled source domain to an unlabeled target domain. Recently, adversarial domain adaptation with two distinct classifiers (bi-classifier) has been introduced into UDA which is effective to align distributions between different domains. Previous bi-classifier adversarial learning methods only focus on the similarity between the outputs of two distinct classifiers. However, the similarity of the outputs cannot guarantee the accuracy of target samples, i.e., target samples may match to wrong categories even if the discrepancy between two classifiers is small. To challenge this issue, in this paper, we propose a cross-domain gradient discrepancy minimization (CGDM) method which explicitly minimizes the discrepancy of gradients generated by source samples and target samples. Specifically, the gradient gives a cue for the semantic information of target samples so it can be used as a good supervision to improve the accuracy of target samples. In order to compute the gradient signal of target samples, we further obtain target pseudo labels through a clustering-based self-supervised learning. Extensive experiments on three widely used UDA datasets show that our method surpasses many previous state-of-the-arts. Codes are available at https://github.com/lijin118/CGDM.
Unsupervised domain adaptation aims to transfer knowledge from a labeled source domain to an unlabeled target domain. Previous methods focus on learning domain-invariant features to decrease the discrepancy between the feature distributions as well as minimizing the source error and have made remarkable progress. However, a recently proposed theory reveals that such a strategy is not sufficient for a successful domain adaptation. It shows that besides a small source error, both the discrepancy between the feature distributions and the discrepancy between the labeling functions should be small across domains. The discrepancy between the labeling functions is essentially the cross-domain errors which are ignored by existing methods. To overcome this issue, in this paper, a novel method is proposed to integrate all the objectives into a unified optimization framework. Moreover, the incorrect pseudo labels widely used in previous methods can lead to error accumulation during learning. To alleviate this problem, the pseudo labels are obtained by utilizing structural information of the target domain besides source classifier and we propose a curriculum learning based strategy to select the target samples with more accurate pseudo-labels during training. Comprehensive experiments are conducted, and the results validate that our approach outperforms state-of-the-art methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا