Do you want to publish a course? Click here

Genetic column generation: Fast computation of high-dimensional multi-marginal optimal transport problems

98   0   0.0 ( 0 )
 Added by Gero Friesecke
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We introduce a simple, accurate, and extremely efficient method for numerically solving the multi-marginal optimal transport (MMOT) problems arising in density functional theory. The method relies on (i) the sparsity of optimal plans [for $N$ marginals discretized by $ell$ gridpoints each, general Kantorovich plans require $ell^N$ gridpoints but the support of optimizers is of size $O(ellcdot N)$ [FV18]], (ii) the method of column generation (CG) from discrete optimization which to our knowledge has not hitherto been used in MMOT, and (iii) ideas from machine learning. The well-known bottleneck in CG consists in generating new candidate columns efficiently; we prove that in our context, finding the best new column is an NP-complete problem. To overcome this bottleneck we use a genetic learning method tailormade for MMOT in which the dual state within CG plays the role of an adversary, in loose similarity to Wasserstein GANs. On a sequence of benchmark problems with up to 120 gridpoints and up to 30 marginals, our method always found the exact optimizers. Moreover, empirically the number of computational steps needed to find them appears to scale only polynomially when both $N$ and $ell$ are simultaneously increased (while keeping their ratio fixed to mimic a thermodynamic limit of the particle system).

rate research

Read More

We propose and analyze an optimal mass transport method for a random genetic drift problem driven by a Moran process under weak-selection. The continuum limit, formulated as a reaction-advection-diffusion equation known as the Kimura equation, inherits degenerate diffusion from the discrete stochastic process that conveys to the blow-up into Dirac-delta singularities hence brings great challenges to both the analytical and numerical studies. The proposed numerical method can quantitatively capture to the fullest possible extent the development of Dirac-delta singularities for genetic segregation on one hand, and preserves several sets of biologically relevant and computationally favored properties of the random genetic drift on the other. Moreover, the numerical scheme exponentially converges to the unique numerical stationary state in time at a rate independent of the mesh size up to a mesh error. Numerical evidence is given to illustrate and support these properties, and to demonstrate the spatio-temporal dynamics of random generic drift.
We study multi-marginal optimal transport, a generalization of optimal transport that allows us to define discrepancies between multiple measures. It provides a framework to solve multi-task learning problems and to perform barycentric averaging. However, multi-marginal distances between multiple measures are typically challenging to compute because they require estimating a transport plan with $N^P$ variables. In this paper, we address this issue in the following way: 1) we efficiently solve the one-dimensional multi-marginal Monge-Wasserstein problem for a classical cost function in closed form, and 2) we propose a higher-dimensional multi-marginal discrepancy via slicing and study its generalized metric properties. We show that computing the sliced multi-marginal discrepancy is massively scalable for a large number of probability measures with support as large as $10^7$ samples. Our approach can be applied to solving problems such as barycentric averaging, multi-task density estimation and multi-task reinforcement learning.
Computing optimal transport maps between high-dimensional and continuous distributions is a challenging problem in optimal transport (OT). Generative adversarial networks (GANs) are powerful generative models which have been successfully applied to learn maps across high-dimensional domains. However, little is known about the nature of the map learned with a GAN objective. To address this problem, we propose a generative adversarial model in which the discriminators objective is the $2$-Wasserstein metric. We show that during training, our generator follows the $W_2$-geodesic between the initial and the target distributions. As a consequence, it reproduces an optimal map at the end of training. We validate our approach empirically in both low-dimensional and high-dimensional continuous settings, and show that it outperforms prior methods on image data.
We investigate the problem of optimal transport in the so-called Kantorovich form, i.e. given two Radon measures on two compact sets, we seek an optimal transport plan which is another Radon measure on the product of the sets that has these two measures as marginals and minimizes a certain cost function. We consider quadratic regularization of the problem, which forces the optimal transport plan to be a square integrable function rather than a Radon measure. We derive the dual problem and show strong duality and existence of primal and dual solutions to the regularized problem. Then we derive two algorithms to solve the dual problem of the regularized problem: A Gauss-Seidel method and a semismooth quasi-Newton method and investigate both methods numerically. Our experiments show that the methods perform well even for small regularization parameters. Quadratic regularization is of interest since the resulting optimal transport plans are sparse, i.e. they have a small support (which is not the case for the often used entropic regularization where the optimal transport plan always has full measure).
We formulate and solve a regression problem with time-stamped distributional data. Distributions are considered as points in the Wasserstein space of probability measures, metrized by the 2-Wasserstein metric, and may represent images, power spectra, point clouds of particles, and so on. The regression seeks a curve in the Wasserstein space that passes closest to the dataset. Our regression problem allows utilizing general curves in a Euclidean setting (linear, quadratic, sinusoidal, and so on), lifted to corresponding measure-valued curves in the Wasserstein space. It can be cast as a multi-marginal optimal transport problem that allows efficient computation. Illustrative academic examples are presented.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا