Do you want to publish a course? Click here

Second harmonic generation in germanium quantum wells for nonlinear silicon photonics

91   0   0.0 ( 0 )
 Added by Michele Ortolani
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Second-harmonic generation (SHG) is a direct measure of the strength of second-order nonlinear optical effects, which also include frequency mixing and parametric oscillations. Natural and artificial materials with broken center-of-inversion symmetry in their unit cell display high SHG efficiency, however the silicon-foundry compatible group-IV semiconductors (Si, Ge) are centrosymmetric, thereby preventing full integration of second-order nonlinearity in silicon photonics platforms. Here we demonstrate strong SHG in Ge-rich quantum wells grown on Si wafers. The symmetry breaking is artificially realized with a pair of asymmetric coupled quantum wells (ACQW), in which three of the quantum-confined states are equidistant in energy, resulting in a double resonance for SHG. Laser spectroscopy experiments demonstrate a giant second-order nonlinearity at mid-infrared pump wavelengths between 9 and 12 microns. Leveraging on the strong intersubband dipoles, the nonlinear susceptibility almost reaches 10^5 pm/V



rate research

Read More

Silicon photonics lacks a second-order nonlinear optical response in general because the typical constituent materials are centro-symmetric and lack inversion symmetry, which prohibits second-order nonlinear processes such as second harmonic generation (SHG). Here, for the first time, we realize efficient SHG in a silicon-based optical microresonator by combining a strong photo-induced effective second-order nonlinearity with resonant enhancement and perfect-phase matching. We show a record-high conversion efficiency of 2,500 %/W, which is 2 to 4 orders of magnitude larger than previous works. In particular, our devices realize mW-level SHG output powers with > 20 % power conversion efficiency. This demonstration is a major breakthrough in realizing efficient second-order nonlinear processes in silicon photonics, and paves the way for integrated self-referencing of Kerr frequency combs for compact optical frequency synthesis and optical clock technologies.
158 - Tingting Liu , Shuyuan Xiao 2021
The ability to engineer nonlinear optical processes in all-dielectric nanostructures is both of fundamental interest and highly desirable for high-performance, robust, and miniaturized nonlinear optical devices. Herein, we propose a novel paradigm for the efficient tuning of second-harmonic generation (SHG) process in dielectric nanoantennas by integrating with chalcogenide phase change material. In a design with Ge$_{2}$Sb$_{2}$Te$_{5}$ (GST) film sandwiched between the AlGaAs nanoantennas and AlO$_{x}$ substrate, the nonlinear SHG signal from the AlGaAs nanoantennas can be boosted via the resonantly localized field induced by the optically-induced Mie-type resonances, and further modulated by exploiting the GST amorphous-to-crystalline phase change in a non-volatile, multi-level manner. The tuning strategy originates from the modulation of resonant conditions by changes in the refractive index of GST. With a thorough examination of tuning performances for different nanoantenna radii, a maximum modulation depth as high as 540$%$ is numerically demonstrated. This work not only reveals out the potential of GST in optical nonlinearity control, but also provides promising strategy in smart designing tunable and reconfigurable nonlinear optical devices, e.g., light emitters, modulators, and sensors.
83 - Yu Song , Siqi Hu , Miao-Ling Lin 2018
We report the observations of unexpected layer-dependent, strong, and anisotropic second harmonic generations (SHGs) in atomically thin ReS2. Appreciable (negligible) SHGs are obtained from even (odd) numbers of ReS2 layers, which is opposite to the layer-dependence of SHGs in group VI transition metal dichalcogenides, such as MoS2 and WS2. The results are analyzed from ReS2s crystal structure, implying second harmonic polarizations generated from the interlayer coupling. Pumped by a telecomband laser, SHG from the bilayer ReS2 is almost one order of magnitude larger than that from the monolayer WS2. The estimated second-order nonlinear susceptibility of 900 pm/V is remarkably high among those reported in two-dimensional materials. The laser polarization dependence of ReS2s SHG is strongly anisotropic and indicates its distorted lattice structure with more unequal and non-zero second-order susceptibility elements.
We demonstrate supermode-based second harmonic generation in an integrated nonlinear interferometer made of linear and nonlinear directional couplers. We use a fully-fibered pump shaper to demonstrate second harmonic generation pumped by the symmetric or anti- symmetric fundamental spatial modes. The selection of the pumping mode and thus of a specific SHG spectral profile is achieved through the selection of the fundamental wavelength and via a robust phase setting scheme. We use two methods: either post-selecting or actively setting the pumping mode. Such a modal phase matching paves the way for classical and quantum applications of coupled nonlinear photonic circuits, where multimode excitation, encoding and detection are a route for multiplexing and scaling up light-processing.
We demonstrate a polarization rotator integrated at the output of a GaAs waveguide producing type I second harmonic generation (SHG). Form-birefringent phase matching between the pump fundamental transverse electric (TE) mode near 2.0 $mu$m wavelength and the signal fundamental transverse magnetic (TM) mode efficiently generates light at 1.0 $mu$m wavelength. A SiN waveguide layer is integrated with the SHG device to form a multi-functional photonic integrated circuit. The polarization rotator couples light between the two layers and rotates the polarization from TM to TE or from TE to TM. With a TE-polarized 2.0 $mu$m pump, type I SHG is demonstrated with the signal rotated to TE polarization. Passive transmission near 1.0 $mu$m wavelength shows ~80 % polarization rotation across a broad bandwidth of ~100 nm. By rotating the signal polarization to match that of the pump, this SHG device demonstrates a critical component of an integrated self-referenced octave-spanning frequency comb. This device is expected to provide crucial functionality as part of a fully integrated optical frequency synthesizer with resolution of less than one part in 10$^{14}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا