Do you want to publish a course? Click here

SelfExplain: A Self-Explaining Architecture for Neural Text Classifiers

126   0   0.0 ( 0 )
 Added by Dheeraj Rajagopal
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We introduce SelfExplain, a novel self-explaining model that explains a text classifiers predictions using phrase-based concepts. SelfExplain augments existing neural classifiers by adding (1) a globally interpretable layer that identifies the most influential concepts in the training set for a given sample and (2) a locally interpretable layer that quantifies the contribution of each local input concept by computing a relevance score relative to the predicted label. Experiments across five text-classification datasets show that SelfExplain facilitates interpretability without sacrificing performance. Most importantly, explanations from SelfExplain show sufficiency for model predictions and are perceived as adequate, trustworthy and understandable by human judges compared to existing widely-used baselines.



rate research

Read More

Multi-task learning leverages potential correlations among related tasks to extract common features and yield performance gains. However, most previous works only consider simple or weak interactions, thereby failing to model complex correlations among three or more tasks. In this paper, we propose a multi-task learning architecture with four types of recurrent neural layers to fuse information across multiple related tasks. The architecture is structurally flexible and considers various interactions among tasks, which can be regarded as a generalized case of many previous works. Extensive experiments on five benchmark datasets for text classification show that our model can significantly improve performances of related tasks with additional information from others.
With the ever-increasing complexity of neural language models, practitioners have turned to methods for understanding the predictions of these models. One of the most well-adopted approaches for model interpretability is feature-based interpretability, i.e., ranking the features in terms of their impact on model predictions. Several prior studies have focused on assessing the fidelity of feature-based interpretability methods, i.e., measuring the impact of dropping the top-ranked features on the model output. However, relatively little work has been conducted on quantifying the robustness of interpretations. In this work, we assess the robustness of interpretations of neural text classifiers, specifically, those based on pretrained Transformer encoders, using two randomization tests. The first compares the interpretations of two models that are identical except for their initializations. The second measures whether the interpretations differ between a model with trained parameters and a model with random parameters. Both tests show surprising deviations from expected behavior, raising questions about the extent of insights that practitioners may draw from interpretations.
112 - Hanjie Chen , Yangfeng Ji 2020
To build an interpretable neural text classifier, most of the prior work has focused on designing inherently interpretable models or finding faithful explanations. A new line of work on improving model interpretability has just started, and many existing methods require either prior information or human annotations as additional inputs in training. To address this limitation, we propose the variational word mask (VMASK) method to automatically learn task-specific important words and reduce irrelevant information on classification, which ultimately improves the interpretability of model predictions. The proposed method is evaluated with three neural text classifiers (CNN, LSTM, and BERT) on seven benchmark text classification datasets. Experiments show the effectiveness of VMASK in improving both model prediction accuracy and interpretability.
Most adversarial attack methods on text classification can change the classifiers prediction by synonym substitution. We propose the adversarial sentence rewriting sampler (ASRS), which rewrites the whole sentence to generate more similar and higher-quality adversarial examples. Our method achieves a better attack success rate on 4 out of 7 datasets, as well as significantly better sentence quality on all 7 datasets. ASRS is an indispensable supplement to the existing attack methods, because classifiers cannot resist the attack from ASRS unless they are trained on adversarial examples found by ASRS.
Learning text representation is crucial for text classification and other language related tasks. There are a diverse set of text representation networks in the literature, and how to find the optimal one is a non-trivial problem. Recently, the emerging Neural Architecture Search (NAS) techniques have demonstrated good potential to solve the problem. Nevertheless, most of the existing works of NAS focus on the search algorithms and pay little attention to the search space. In this paper, we argue that the search space is also an important human prior to the success of NAS in different applications. Thus, we propose a novel search space tailored for text representation. Through automatic search, the discovered network architecture outperforms state-of-the-art models on various public datasets on text classification and natural language inference tasks. Furthermore, some of the design principles found in the automatic network agree well with human intuition.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا