Do you want to publish a course? Click here

Brain Image Synthesis with Unsupervised Multivariate Canonical CSC$ell_4$Net

140   0   0.0 ( 0 )
 Added by Yawen Huang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recent advances in neuroscience have highlighted the effectiveness of multi-modal medical data for investigating certain pathologies and understanding human cognition. However, obtaining full sets of different modalities is limited by various factors, such as long acquisition times, high examination costs and artifact suppression. In addition, the complexity, high dimensionality and heterogeneity of neuroimaging data remains another key challenge in leveraging existing randomized scans effectively, as data of the same modality is often measured differently by different machines. There is a clear need to go beyond the traditional imaging-dependent process and synthesize anatomically specific target-modality data from a source input. In this paper, we propose to learn dedicated features that cross both intre- and intra-modal variations using a novel CSC$ell_4$Net. Through an initial unification of intra-modal data in the feature maps and multivariate canonical adaptation, CSC$ell_4$Net facilitates feature-level mutual transformation. The positive definite Riemannian manifold-penalized data fidelity term further enables CSC$ell_4$Net to reconstruct missing measurements according to transformed features. Finally, the maximization $ell_4$-norm boils down to a computationally efficient optimization problem. Extensive experiments validate the ability and robustness of our CSC$ell_4$Net compared to the state-of-the-art methods on multiple datasets.



rate research

Read More

Hematoxylin and Eosin stained histopathology image analysis is essential for the diagnosis and study of complicated diseases such as cancer. Existing state-of-the-art approaches demand extensive amount of supervised training data from trained pathologists. In this work we synthesize in an unsupervised manner, large histopathology image datasets, suitable for supervised training tasks. We propose a unified pipeline that: a) generates a set of initial synthetic histopathology images with paired information about the nuclei such as segmentation masks; b) refines the initial synthetic images through a Generative Adversarial Network (GAN) to reference styles; c) trains a task-specific CNN and boosts the performance of the task-specific CNN with on-the-fly generated adversarial examples. Our main contribution is that the synthetic images are not only realistic, but also representative (in reference styles) and relatively challenging for training task-specific CNNs. We test our method for nucleus segmentation using images from four cancer types. When no supervised data exists for a cancer type, our method without supervision cost significantly outperforms supervised methods which perform across-cancer generalization. Even when supervised data exists for all cancer types, our approach without supervision cost performs better than supervised methods.
95 - Zhe Xu , Jiangpeng Yan , Jie Luo 2020
Multimodal image registration (MIR) is a fundamental procedure in many image-guided therapies. Recently, unsupervised learning-based methods have demonstrated promising performance over accuracy and efficiency in deformable image registration. However, the estimated deformation fields of the existing methods fully rely on the to-be-registered image pair. It is difficult for the networks to be aware of the mismatched boundaries, resulting in unsatisfactory organ boundary alignment. In this paper, we propose a novel multimodal registration framework, which leverages the deformation fields estimated from both: (i) the original to-be-registered image pair, (ii) their corresponding gradient intensity maps, and adaptively fuses them with the proposed gated fusion module. With the help of auxiliary gradient-space guidance, the network can concentrate more on the spatial relationship of the organ boundary. Experimental results on two clinically acquired CT-MRI datasets demonstrate the effectiveness of our proposed approach.
106 - Kai Ye , Yinru Ye , Minqiang Yang 2021
The main challenges of image-to-image (I2I) translation are to make the translated image realistic and retain as much information from the source domain as possible. To address this issue, we propose a novel architecture, termed as IEGAN, which removes the encoder of each network and introduces an encoder that is independent of other networks. Compared with previous models, it embodies three advantages of our model: Firstly, it is more directly and comprehensively to grasp image information since the encoder no longer receives loss from generator and discriminator. Secondly, the independent encoder allows each network to focus more on its own goal which makes the translated image more realistic. Thirdly, the reduction in the number of encoders performs more unified image representation. However, when the independent encoder applies two down-sampling blocks, its hard to extract semantic information. To tackle this problem, we propose deep and shallow information space containing characteristic and semantic information, which can guide the model to translate high-quality images under the task with significant shape or texture change. We compare IEGAN with other previous models, and conduct researches on semantic information consistency and component ablation at the same time. These experiments show the superiority and effectiveness of our architecture. Our code is published on: https://github.com/Elvinky/IEGAN.
We propose a novel method for unsupervised image-to-image translation, which incorporates a new attention module and a new learnable normalization function in an end-to-end manner. The attention module guides our model to focus on more important regions distinguishing between source and target domains based on the attention map obtained by the auxiliary classifier. Unlike previous attention-based method which cannot handle the geometric changes between domains, our model can translate both images requiring holistic changes and images requiring large shape changes. Moreover, our new AdaLIN (Adaptive Layer-Instance Normalization) function helps our attention-guided model to flexibly control the amount of change in shape and texture by learned parameters depending on datasets. Experimental results show the superiority of the proposed method compared to the existing state-of-the-art models with a fixed network architecture and hyper-parameters. Our code and datasets are available at https://github.com/taki0112/UGATIT or https://github.com/znxlwm/UGATIT-pytorch.
Deep learning based medical image diagnosis has shown great potential in clinical medicine. However, it often suffers two major difficulties in real-world applications: 1) only limited labels are available for model training, due to expensive annotation costs over medical images; 2) labeled images may contain considerable label noise (e.g., mislabeling labels) due to diagnostic difficulties of diseases. To address these, we seek to exploit rich labeled data from relevant domains to help the learning in the target task via {Unsupervised Domain Adaptation} (UDA). Unlike most UDA methods that rely on clean labeled data or assume samples are equally transferable, we innovatively propose a Collaborative Unsupervised Domain Adaptation algorithm, which conducts transferability-aware adaptation and conquers label noise in a collaborative way. We theoretically analyze the generalization performance of the proposed method, and also empirically evaluate it on both medical and general images. Promising experimental results demonstrate the superiority and generalization of the proposed method.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا