Do you want to publish a course? Click here

Generalized 2HDM with wrong-sign lepton Yukawa coupling, in light of $g_{mu}-2$ and lepton flavor violation at the future LHC

115   0   0.0 ( 0 )
 Added by Nivedita Ghosh
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

To explain the observed muon anomaly and simultaneously evade bounds from lepton flavor violation in the same model parameter space is a long cherished dream. In view of a generalized Two Higgs Doublet Model, with a Yukawa structure as a perturbation of Type-X, we are able to get substantial parameter space satisfying this criteria. We are focusing on a region with {bf wrong-sign} lepton-Yukawa coupling which gives rise to an interesting phenomenological consequences. We found that in the wrong-sign region, it is possible to probe the low-mass pseudoscalar in flavor-violating decay mode with considerably better significance compared to the right-sign region. Performing a simple cut-based analysis we show that at 14 TeV run of the LHC with $300 fb^{-1}$ integrated luminosity, part of the model parameter space can be probed with significance $geq 5sigma$ which further improves with Artificial Neural Network analysis.



rate research

Read More

184 - Wei-Shu Hou , Girish Kumar 2021
The recent confirmation of the muon $g-2$ anomaly by the Fermilab g-2 experiment may harbinger a new era in $mu$ and $tau$ physics. As is known, the effect can arise from one-loop exchange of sub-TeV exotic scalar and pseudoscalars, namely $H$ and $A$, that have flavor changing neutral couplings $rho_{taumu}$ and $rho_{mutau}$ at $sim 20$ times the usual tau Weinberg coupling, $lambda_tau$. A similar diagram induces $mu to egamma$, where $rho_{etau}= rho_{tau e} = {cal O}(lambda_e)$ brings the rate right into the sensitivity of the MEG II experiment, and the $mu egamma$ dipole can be probed further by $mu to 3e$ and $mu N to eN$. With its promised sensitivity range and ability to use different nuclei, the $mu N to e N$ conversion experiments can not only make discovery, but access the extra diagonal quark Weinberg couplings $rho_{qq}$. For the $tau$ lepton, $tau to mugamma$ would probe $rho_{tautau}$ down to $lambda_tau$ or lower, while $tau to 3mu$ would probe $rho_{mumu}$ to ${cal O}(lambda_{mu})$.
We present a comprehensive analysis of the potential sensitivity of the Electron-Ion Collider (EIC) to charged lepton flavor violation (CLFV) in the channel $epto tau X$, within the model-independent framework of the Standard Model Effective Field Theory (SMEFT). We compute the relevant cross sections to leading order in QCD and electroweak corrections and perform simulations of signal and SM background events in various $tau$ decay channels, suggesting simple cuts to enhance the associated estimated efficiencies. To assess the discovery potential of the EIC in $tau$-$e$ transitions, we study the sensitivity of other probes of this physics across a broad range of energy scales, from $pp to e tau X$ at the Large Hadron Collider to decays of $B$ mesons and $tau$ leptons, such as $tau to e gamma$, $tau to e ell^+ ell^-$, and crucially the hadronic modes $tau to e Y$ with $Y in { pi, K, pi pi, K pi, ...}$. We find that electroweak dipole and four-fermion semi-leptonic operators involving light quarks are already strongly constrained by $tau$ decays, while operators involving the $c$ and $b$ quarks present more promising discovery potential for the EIC. An analysis of three models of leptoquarks confirms the expectations based on the SMEFT results. We also identify future directions needed to maximize the reach of the EIC in CLFV searches: these include an optimization of the $tau$ tagger in hadronic channels, an exploration of background suppression through tagging $b$ and $c$ jets in the final state, and a global fit by turning on all SMEFT couplings, which will likely reveal new discovery windows for the EIC.
We investigate a model in which tiny neutrino masses are generated at the two-loop level by using scalar leptoquark and diquark multiplets. The diquark can be singly produced at the LHC, and it can decay into a pair of leptoquarks through the lepton number violating interaction. Subsequent decays of the two leptoquarks can provide a clear signature of the lepton number violation, namely two QCD jets and a pair of same-signed charged leptons without missing energy. We show that the signal process is not suppressed while neutrino masses are appropriately suppressed.
We study lepton flavour violating decays of neutralinos and sleptons within the Minimal Supersymmetric Standard Model, assuming two and three generation mixings in the slepton sector. We take into account the most recent bounds on flavour violating rare lepton decays. Taking the SPS1a scenario as an example, we show that some of the lepton flavour violating branching ratios of neutralinos and sleptons can be sizable (~ 5-10%). We study the impact of the lepton flavour violating neutralino and slepton decays on the di-lepton mass distributions measured at LHC. We find that they can result in novel and characteristic edge structures in the distributions. In particular, double-edge structures can appear in the e tau and mu tau mass spectra if ~tau_1 is the lightest slepton. The appearance of these remarkable structures provides a powerful test of supersymmetric lepton flavour violation at LHC.
145 - Xiao-Fang Han 2020
In light of the recent LHC Higgs data, we examine the parameter space of type II two-Higgs-doublet model in which the 125 GeV Higgs has the wrong sign Yukawa couplings. Combining related theoretical and experimental limits, we find that the LHC Higgs data exclude most of the parameter space of the wrong sign Yukawa coupling. For $m_H=$ 600 GeV, the allowed samples are mainly distributed in several corners and narrow bands of m_A<20 GeV, 30 GeV<m_A<120 GeV, 240 GeV<m_A<300 GeV, 380 GeV <m_A<430 GeV, and 480 GeV<m_A<550 GeV. For m_A=600 GeV, m_H is required to be less than 470 GeV. The light pseudo-scalar with a mass of 20 GeV is still allowed in case of the wrong sign Yukawa coupling of 125 GeV Higgs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا