Do you want to publish a course? Click here

Aluminum abundances of multiple stellar generations in the globular cluster NGC 1851

168   0   0.0 ( 0 )
 Added by Eugenio Carretta
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the distribution of aluminum abundances among red giants in the peculiar globular cluster NGC 1851. Aluminum abundances were derived from the strong doublet Al I 8772-8773 A measured on intermediate resolution FLAMES spectra of 50 cluster stars acquired under the Gaia-ESO public survey. We coupled these abundances with previously derived abundance of O, Na, Mg to fully characterize the interplay of the NeNa and MgAl cycles of H-burning at high temperature in the early stellar generation in NGC 1851. The stars in our sample show well defined correlations between Al,Na and Si; Al is anticorrelated with O and Mg. The average value of the [Al/Fe] ratio steadily increases going from the first generation stars to the second generation populations with intermediate and extremely modified composition. We confirm on a larger database the results recently obtained by us (Carretta et al. 2011a): the pattern of abundances of proton-capture elements implies a moderate production of Al in NGC 1851. We find evidence of a statistically significant positive correlation between Al and Ba abundances in the more metal-rich component of red giants in NGC 1851.



rate research

Read More

250 - Eugenio Carretta 2021
NGC 4833 is a metal-poor Galactic globular cluster (GC) whose multiple stellar populations present an extreme chemical composition. The Na-O anti-correlation is quite extended, which is in agreement with the long tail on the blue horizontal branch, and the large star-to-star variations in the [Mg/Fe] ratio span more than 0.5 dex. Recently, significant excesses of Ca and Sc with respect to field stars of a similar metallicity were also found, signaling the production of species forged in H-burning at a very high temperature in the polluters of the first generation in this cluster. Since an enhancement of potassium is also expected under these conditions, we tested this scenario by analysing intermediate resolution spectra of 59 cluster stars including the K I resonance line at 7698.98 A. We found a wide spread of K abundances, anti-correlated to Mg and O abundances, as previously also observed in NGC 2808. The abundances of K are found to be correlated to those of Na, Ca, and Sc. Overall, this chemical pattern confirms that NGC 4833 is one of the relatively few GCs where the self-enrichment from first generation polluters occurred at such high temperatures that proton-capture reactions were able to proceed up to heavier species such as K and possibly Ca. The spread in K observed in GCs appears to be a function of a linear combination of cluster total luminosity and metallicity, as other chemical signatures of multiple stellar populations in GCs.
501 - Eugenio Carretta 2014
We present the abundances of N in a sample of 62 stars on the red giant branch (RGB) in the peculiar globular cluster NGC 1851. The values of [N/Fe] ratio were obtained by comparing the flux measured in the observed spectra with that from synthetic spectra for up to about 15 features of CN. This is the first time that N abundances are obtained for such a large sample of RGB stars from medium-resolution spectroscopy in this cluster. With these abundances we provide a chemical tagging of the split red giant branch found from several studies in NGC 1851. The secondary, reddest sequence on the RGB is populated almost exclusively by N-rich stars, confirming our previous suggestion based on Stromgren magnitudes and colours. These giants are also, on average, enriched in s-process elements such as Ba, and are likely the results of pollution from low mass stars that experienced episodes of third dredge-up in the asymptotic giant branch phase.
We present chemical abundance analysis of a sample of 15 red giant branch (RGB) stars of the Globular Cluster NGC~1851 distributed along the two RGBs of the (v, v-y) CMD. We determined abundances for C+N+O, Na, $alpha$, iron-peak, and s-elements. We found that the two RGB populations significantly differ in their light (N,O,Na) and s-element content. On the other hand, they do not show any significant difference in their $alpha$ and iron-peak element content. More importantly, the two RGB populations do not show any significant difference in their total C+N+O content. Our results do not support previous hypotheses suggesting that the origin of the two RGBs and the two subgiant branches of the cluster is related to a different content of either $alpha$ (including Ca) or iron-peak elements, or C+N+O abundance, due to a second generation polluted by SNeII.
151 - E. Carretta 2015
We present the abundance analysis of 82 red giant branch stars in the dense, metal-poor globular cluster NGC 6093 (M 80), the largest sample of stars analyzed in this way for this cluster. From high resolution UVES spectra of 14 stars and intermediate resolution GIRAFFE spectra for the other stars we derived abundances of O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Ba, La, Ce, Pr, Nd, Sm, Eu. On our UVES metallicity scale the mean metal abundance of M 80 is [Fe/H]=-1.791+/-0.006+/-0.076 (+/-statistical +/-systematic error) with rms=0.023 (14 stars). M 80 shows star to star variations in proton-capture elements, and the extension of the Na-O anticorrelation perfectly fit the relations with (i) total cluster mass, (ii) horizontal branch morphology, and (iii) cluster concentration previously found by our group. The chemistry of multiple stellar populations in M 80 does not look extreme. The cluster is also a typical representative of halo globular clusters for what concerns the pattern of alpha-capture and Fe-group elements. However we found that a significant contribution from the s-process is required to account for the distribution of neutron-capture elements. A minority of stars in M 80 seem to exhibit slightly enhanced abundances of s-process species, compatible with those observed in M 22 and NGC 1851, although further confirmation from larger samples is required.
246 - C. Lardo 2012
We present the first chemical analysis of stars on the double subgiant branch (SGB) of the globular cluster NGC 1851. We obtained 48 Magellan IMACS spectra of subgiants and fainter stars covering the spectral region between 3650-6750AA, to derive C and N abundances from the spectral features at 4300AA (G-band) and at ~ 3883AA (CN). We added to our sample ~ 45 unvevolved stars previously observed with FORS2 at the VLT. These two datasets were homogeneously reduced and analyzed. We derived abundances of C and N for a total of 64 stars and found considerable star-to-star variations in both [C/H] and [N/H] at all luminosities extending to the red giant branch (RGB) base (V~18.9). These abundances appear to be strongly anticorrelated, as would be expected from the CN-cycle enrichment, but we did not detect any bimodality in the C or N content. We used HST and ground-based photometry to select two groups of faint- and bright-SGB stars from the visual and Stromgren color-magnitude diagrams. Significant variations in the carbon and nitrogen abundances are present among stars of each group, which indicates that each SGB hosts multiple subgenerations of stars. Bright- and faint-SGB stars differ in the total C+N content, where the fainter SGB have about 2.5 times the C+N content of the brighter ones. Coupling our results with literature photometric data and abundance determinations from high-resolution studies, we identify the fainter SGB with the red-RGB population, which also should be richer on average in Ba and other s-process elements, as well as in Na and N, when compared to brighter SGB and the blue-RGB population.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا