Do you want to publish a course? Click here

Plasmonically enhanced spectrally selective narrowband MWIR and LWIR light detection based on hybrid nanopatterned graphene and phase changing vanadium oxide heterostructure operating close to room temperature

58   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the model of an ultrasensitive mid-infrared (mid-IR) photodetector operating in the mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) domains consisting of a hybrid heterostructure made of nanopatterned graphene (NPG) and vanadium dioxide (VO$_2$) which exhibits a large responsivity of $Rsim 10^4$ V/W, a detectivity exceeding $D^*sim 10^{10}$ J, and a sensitivity in terms of noise-equivalent power $mathrm{NEP}sim 100$ fW/$sqrt{rm Hz}$ close to room temperature by taking advantage of the phase change of a thin VO$_2$ film. Our proposed photodetector can reach an absorption of nearly 100% in monolayer graphene due to localized surface plasmons (LSPs) around the patterned circular holes. The geometry of the nanopattern and an electrostatic gate potential can be used to tune the absorption peak in the mid-IR regime between 3 and 12 $mu$m. After the photon absorption by the NPG sheet and the resulting phase change of VO$_2$ from insulating to metallic phase the applied bias voltage $V_b$ triggers a current through the VO$_2$ sheet, which can be detected electronically in about 1 ms, shorter than the detection times of current VO$_2$ bolometers. Our envisioned mid-IR photodetector reaches detectivities of cryogenically cooled HgCdTe photodetectors and sensitivities larger than VO$_2$ microbolometers while operating close to room temperature.



rate research

Read More

We present a proof of concept for a spectrally selective thermal mid-IR source based on nanopatterned graphene (NPG) with a typical mobility of CVD-grown graphene (up to $3000$ cm$^2$V$^{-1}$s$^{-1}$), ensuring scalability to large areas. For that, we solve the electrostatic problem of a conducting hyperboloid with an elliptical wormhole in the presence of an in-plane electric field. The localized surface plasmons (LSPs) on the NPG sheet allow for the control and tuning of the thermal emission spectrum in the wavelength regime from 3 $mu$m to 12 $mu$m. The LSPs along with an optical cavity increase the emittance of graphene from about 2.3% for pristine graphene to 80% for NPG, thereby outperforming state-of-the-art pristine graphene light sources operating in the near-infrared (NIR) by a factor of 100. A maximum emission power per area of 11x10^3 W/m$^2$ at $T=2000$ K for a bias voltage of $V=23$ V is achieved by Joule heating. By generalizing Plancks theory and considering the nonlocal fluctuation-dissipation theorem with nonlocal response of surface plasmons in graphene in RPA, we show that the coherence length of the graphene plasmons and the thermally emitted photons can be as large as 13 $mu$m and 150 $mu$m, respectively, providing the opportunity to create phased arrays. The spatial phase variation of the coherence allows for beamsteering of the thermal emission in the range between $12^circ$ and $80^circ$ by tuning the Fermi energy. Our analysis of the nonlocal hydrodynamic response leads to the conjecture that the diffusion length and viscosity in graphene are frequency-dependent. Using finite-difference time domain (FDTD) calculations, coupled mode theory, and RPA, we develop the model of a mid-IR light source based on NPG, which will pave the way to graphene-based optical mid-IR communication, mid-IR color displays, mid-IR spectroscopy, and virus detection.
A residual disorder in the gate system is the main problem on the way to create artificial graphene based on two-dimensional electron gas. The disorder can be significantly screened/reduced due to the many-body effects. To analyse the screening/disorder problem we consider AlGaAs/GaAs/AlGaAs heterostructure with two metallic gates. We demonstrate that the design least susceptible to the disorder corresponds to the weak coupling regime (opposite to tight binding) which is realised via system of quantum anti-dots. The most relevant type of disorder is the area disorder which is a random variation of areas of quantum anti-dots. The area disorder results in formation of puddles. Other types of disorder, the position disorder and the shape disorder, are practically irrelevant. The formation/importance of puddles dramatically depends on parameters of the nanopatterned heterostructure. A variation of the parameters by 20--30% can change the relative amplitude of puddles by orders of magnitude. Based on this analysis we formulate criteria for the acceptable design of the heterostructure aimed at creation of the artificial graphene.
An ultra-small Coulomb blockade device can be regarded as a mesoscopic artificial atom system and provides a rich experimental environment for studying quantum transport phenomena[1]. Previously, these quantum effects have been investigated using relatively large devices at ultra-low temperatures, where they give rise to a fine additional structure on the Coulomb oscillations [2-13]. Here, we report transport measurements carried out on a sub-2nm single-electron device; this size is sufficiently small that Coulomb blockade, and other quantum effects, persist up to room temperature (RT). These devices were made by scaling the size of a FinFET structure down to an ultimate limiting form, resulting in the reliable formation of a sub-2nm silicon Coulomb island. Four clear Coulomb diamonds can be observed at RT and the 2nd Coulomb diamond is unusually large, due to quantum confinement. The observed characteristics are successfully modeled on the basis of a very low electron number on the island, combined with Pauli spin exclusion. These effects offer additional functionality for future RT-operating single-electron device applications
Enhancing light-matter interaction by exciting Dirac plasmons on nanopatterned monolayer graphene is an efficient route to achieve high infrared absorption. Here, we designed and fabricated the hexagonal planar arrays of nanohole and nanodisk with and without optical cavity to excite Dirac plasmons on the patterned graphene and investigated the role of plasmon lifetime, extinction cross-section, incident light polarization, the angle of incident of light and pattern dimensions on the light absorption spectra.
Despite tremendous advances in the fundamentals and applications of cavity quantum electrodynamics (CQED), investigations in this field have primarily been limited to optical cavities composed of purely dielectric materials. Here, we demonstrate a hybrid metal-dielectric nanocavity design and realize it in the InAs/GaAs quantum photonics platform utilizing angled rotational metal evaporation. Key features of our nanometallic light-matter interface include: (i) order of magnitude reduction in mode volume compared to that of leading photonic crystal CQED systems; (ii) surface-emitting nanoscale cylindrical geometry and therefore good collection efficiency; and finally (iii) strong and broadband spontaneous emission rate enhancement (Purcell factor ~ 8) of single photons. This light-matter interface may play an important role in quantum technologies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا