No Arabic abstract
Amphiphilic molecules and their self-assembled structures have long been the target of extensive research due to their potential applications in fields ranging from materials design to biomedical and cosmetic applications. Increasing demands for functional complexity have been met with challenges in biochemical engineering, driving researchers to innovate in the design of new amphiphiles. An emerging class of molecules, namely, peptide amphiphiles, combines key advantages and circumvents some of the disadvantages of conventional phospholipids and block-copolymers. Herein, we present new peptide amphiphiles comprised of an intrinsically disordered peptide conjugated to two variants of hydrophobic dendritic domains. These molecules termed intrinsically disordered peptide amphiphiles (IDPA), exhibit a sharp pH-induced micellar phase-transition from low-dispersity spheres to extremely elongated worm-like micelles. We present an experimental characterization of the transition and propose a theoretical model to describe the pH-response. We also present the potential of the shape transition to serve as a mechanism for the design of a cargo hold-and-release application. Such amphiphilic systems demonstrate the power of tailoring the interactions between disordered peptides for various stimuli-responsive biomedical applications.
The human proteome is enriched in proteins that do not fold into a stable 3D structure. These intrinsically disordered proteins (IDPs) spontaneously fluctuate between a large number of configurations in their native form. Remarkably, the disorder does not lead to dysfunction as with denatured folded proteins. In fact, unlike denatured proteins, recent evidences strongly suggest that multiple biological functions stem from such structural plasticity. Here, focusing on the nanoscopic length-scale, we review the latest advances in IDP research and discuss some of the future directions in this highly promising field.
We study coherent wave scattering through waveguides with a step-like surface disorder and find distinct enhancements in the reflection coefficients at well-defined resonance values. Based on detailed numerical and analytical calculations, we can unambiguously identify the origin of these reflection resonances to be higher-order correlations in the surface disorder profile which are typically neglected in similar studies of the same system. A remarkable feature of this new effect is that it relies on the longitudinal correlations in the step profile, although individual step heights are random and thus completely uncorrelated. The corresponding resonances are very pronounced and robust with respect to ensemble averaging, and lead to an enhancement of wave reflection by more than one order of magnitude.
Intrinsically disordered proteins (IDPs) do not possess well-defined three-dimensional structures in solution under physiological conditions. We develop all-atom, united-atom, and coarse-grained Langevin dynamics simulations for the IDP alpha-synuclein that include geometric, attractive hydrophobic, and screened electrostatic interactions and are calibrated to the inter-residue separations measured in recent smFRET experiments. We find that alpha-synuclein is disordered with conformational statistics that are intermediate between random walk and collapsed globule behavior. An advantage of calibrated molecular simulations over constraint methods is that physical forces act on all residues, not only on residue pairs that are monitored experimentally, and these simulations can be used to study oligomerization and aggregation of multiple alpha-synuclein proteins that may precede amyloid formation.
We introduce a modified version of the disordered Klein-Gordon lattice model, having two parameters for controlling the disorder strength: $D$, which determines the range of the coefficients of the on-site potentials, and $W$, which defines the strength of the nearest-neighbor interactions. We fix $W=4$ and investigate how the properties of the systems normal modes change as we approach its ordered version, i.e. $Drightarrow 0$. We show that the probability density distribution of the normal modes frequencies takes a `U-shaped profile as $D$ decreases. Furthermore, we use two quantities for estimating the modes spatial extent, the so-called localization volume $V$ (which is related to the modes second moment) and the modes participation number $P$. We show that both quantities scale as $propto D^{-2}$ when $D$ approaches zero and we numerically verify a proportionality relation between them as $V/P approx 2.6$.
In all Fe superconductors the maximal $T_c$ correlates with the average anion height above the Fe plane, i.e. with the geometry of the FeAs$_4$ or FeCh$_4$ (Ch = Te, Se, S) tetrahedron. By synthesizing FeSe$_{1-x}$S$_x$ (0 $leq$ x $leq$ 1) single crystal alloys and by performing a series of experiments we find that $T_c$ does scale with the average anion height for $x$ in the presence of nematic order and near FeS, whereas superconductivity changes for all other $x$ track local crystallographic disorder and disorder-related scattering. Our findings demonstrate the strong coupling between disorder and $T_c$ as $x$ is tuned beyond the nematic critical point (NCP) and provide evidence of a $T_c$ tuning mechanism related to local bond disorder.