No Arabic abstract
In all Fe superconductors the maximal $T_c$ correlates with the average anion height above the Fe plane, i.e. with the geometry of the FeAs$_4$ or FeCh$_4$ (Ch = Te, Se, S) tetrahedron. By synthesizing FeSe$_{1-x}$S$_x$ (0 $leq$ x $leq$ 1) single crystal alloys and by performing a series of experiments we find that $T_c$ does scale with the average anion height for $x$ in the presence of nematic order and near FeS, whereas superconductivity changes for all other $x$ track local crystallographic disorder and disorder-related scattering. Our findings demonstrate the strong coupling between disorder and $T_c$ as $x$ is tuned beyond the nematic critical point (NCP) and provide evidence of a $T_c$ tuning mechanism related to local bond disorder.
Impurity bound states and quasi-particle scattering from these can serve as sensitive probes for identifying the pairing state of a superconducting condensate. We introduce and discuss defect bound state quasi-particle interference (DBS-QPI) imaging as a tool to extract information about the symmetry of the order parameter from spatial maps of the density of states around magnetic and non-magnetic impurities. We show that the phase information contained in the scattering patterns around impurities can provide valuable information beyond what is obtained through conventional QPI imaging. Keeping track of phase, rather than just magnitudes, in the Fourier transforms is achieved through phase-referenced Fourier transforms that preserve both real and imaginary parts of the QPI images. We further compare DBS-QPI to other approaches which have been proposed to use either QPI or defect scattering to distinguish different symmetries of the order parameter.
The superconducting order parameter is directly related to the pairing interaction, with the amplitude determined by the interaction strength, while the phase reflects the spatial structure of the interaction. However, given the large variety of materials and their rich physical properties within the iron-based high-Tc superconductors, the structure of the order parameter remains controversial in many cases. Here, we introduce Defect Bound State Quasi Particle Interference (DBS-QPI) as a new method to determine the superconducting order parameter. Using a low-temperature scanning tunneling microscope, we image in-gap bound states in the stoichiometric iron-based superconductor LiFeAs and show that the bound states induced by defect scattering are formed from Bogoliubov quasiparticles that have significant spatial extent. Quasiparticle interference from these bound states has unique signatures from which one can determine the phase of the order parameter as well as the nature of the defect, i.e. whether it is better described as a magnetic vs a nonmagnetic scatterer. DBS-QPI provides an easy but general method to characterize the pairing symmetry of superconducting condensates.
By means of the magnetocaloric effect, we examine the nature of the superconducting-normal (S-N) transition of Sr2RuO4, a most promising candidate for a spin-triplet superconductor. We provide thermodynamic evidence that the S-N transition of this oxide is of first order below approximately 0.8 K and only for magnetic field directions very close to the conducting plane, in clear contrast to the ordinary type-II superconductors exhibiting second-order S-N transitions. The entropy release across the transition at 0.2 K is 10% of the normal-state entropy. Our result urges an introduction of a new mechanism to break superconductivity by magnetic field.
The interplay of nematicity and superconductivity has been observed in a wide variety of quantum materials. To explore this interplay, we consider a two-dimensional (2D) array of nematogens, local droplets with $Z_3$ nematicity, coupled to a network of Josephson junction wires. Using finite temperature classical Monte Carlo simulations, we elucidate the phase diagram of this model and show that the development of superconducting correlations and the directional delocalization of Cooper pairs can promote nematogen ordering, resulting in long-range nematic order. We obtain the transport properties of our model within an effective resistor network picture. We discuss these ideas in the context of the 2D electron gas at the (111) KTaO$_3$ interface and the doped topological insulators Nb$_x$Bi$_2$Se$_3$ and Cu$_x$Bi$_2$Se$_3$. Our work makes contact with Phil Andersons numerous contributions to broken symmetries driven by the saving of kinetic energy, including double exchange ferromagnetism and the interlayer tunneling theory of high $T_c$ superconductivity.
When exposed to high magnetic fields, certain materials manifest an exotic superconducting (SC) phase that attracts considerable attention. A proposed explanation of the origin of the high-field phase is the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state. This state is characterized by inhomogeneous superconductivity, where the Cooper pairs have finite center-of-mass momenta. Recently, the high-field phase has been observed in FeSe, and it was deemed to originate from the FFLO state. Here, we synthesized FeSe single crystals with different levels of disorders. The level of disorder is expressed by the ratio of the mean free path to the coherence length and ranges between 35 and 1.2. The upper critical field $B_{rm{c}2}$ was systematically studied over a wide range of temperatures, which went as low as $sim$ 0.5 K, and magnetic fields, which went up to $sim$ 38 T along the $c$ axis and in the $ab$ plane. In the high-field region parallel to the $ab$ plane, an unusual SC phase was confirmed in all the crystals, and the phase was found to be robust to disorders. This result suggests that the high-filed SC state in FeSe may not be a FFLO state, which should be sensitive to disorders.