Do you want to publish a course? Click here

Do e-scooters fill mobility gaps and promote equity before and during COVID-19? A spatiotemporal analysis using open big data

87   0   0.0 ( 0 )
 Added by Xiaojian Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The growing popularity of e-scooters and their rapid expansion across urban streets has attracted widespread attention. A major policy question is whether e-scooters substitute existing mobility options or fill the service gaps left by them. This study addresses this question by analyzing the spatiotemporal patterns of e-scooter service availability and use in Washington DC, focusing on their spatial relationships with public transit and bikesharing. Results from an analysis of three open big datasets suggest that e-scooters have both competing and complementary effects on transit and bikesharing services. The supply of e-scooters significantly overlaps with the service areas of transit and bikesharing, and we classify a majority of e-scooter trips as substitutes to transit and bikesharing uses. A travel-time-based analysis further reveals that when choosing e-scooters over transit, travelers pay a price premium and save some travel time. The price premium is greater during the COVID-19 pandemic but the associated travel-time savings are smaller. This implies that public health considerations rather than time-cost tradeoffs are the main driver for many to choose e-scooters over transit during COVID. In addition, we find that e-scooters complement bikesharing and transit by providing services to underserved neighborhoods. A sizeable proportion (about 10 percent) of e-scooter trips are taken to connect with the rail services. Future research may combine the big-data-based analysis presented here with traditional methods to further shed light on the interactions between e-scooter services, bikesharing, and public transit.



rate research

Read More

Using smartphone location data from Colombia, Mexico, and Indonesia, we investigate how non-pharmaceutical policy interventions intended to mitigate the spread of the COVID-19 pandemic impact human mobility. In all three countries, we find that following the implementation of mobility restriction measures, human movement decreased substantially. Importantly, we also uncover large and persistent differences in mobility reduction between wealth groups: on average, users in the top decile of wealth reduced their mobility up to twice as much as users in the bottom decile. For decision-makers seeking to efficiently allocate resources to response efforts, these findings highlight that smartphone location data can be leveraged to tailor policies to the needs of specific socioeconomic groups, especially the most vulnerable.
Wikipedia, the largest encyclopedia ever created, is a global initiative driven by volunteer contributions. When the COVID-19 pandemic broke out and mobility restrictions ensued across the globe, it was unclear whether Wikipedia volunteers would become less active in the face of the pandemic, or whether they would rise to meet the increased demand for high-quality information despite the added stress inflicted by this crisis. Analyzing 223 million edits contributed from 2018 to 2020 across twelve Wikipedia language editions, we find that Wikipedias global volunteer community responded remarkably to the pandemic, substantially increasing both productivity and the number of newcomers who joined the community. For example, contributions to the English Wikipedia increased by over 20% compared to the expectation derived from pre-pandemic data. Our work sheds light on the response of a global volunteer population to the COVID-19 crisis, providing valuable insights into the behavior of critical online communities under stress.
The COVID-19 pandemic has reshaped the demand for goods and services worldwide. The combination of a public health emergency, economic distress, and misinformation-driven panic have pushed customers and vendors towards the shadow economy. In particular, dark web marketplaces (DWMs), commercial websites accessible via free software, have gained significant popularity. Here, we analyse 851,199 listings extracted from 30 DWMs between January 1, 2020 and November 16, 2020. We identify 788 listings directly related to COVID-19 products and monitor the temporal evolution of product categories including Personal Protective Equipment (PPE), medicines (e.g., hydroxyclorochine), and medical frauds. Finally, we compare trends in their temporal evolution with variations in public attention, as measured by Twitter posts and Wikipedia page visits. We reveal how the online shadow economy has evolved during the COVID-19 pandemic and highlight the importance of a continuous monitoring of DWMs, especially now that real vaccines are available and in short supply. We anticipate our analysis will be of interest both to researchers and public agencies focused on the protection of public health.
Parking demand forecasting and behaviour analysis have received increasing attention in recent years because of their critical role in mitigating traffic congestion and understanding travel behaviours. However, previous studies usually only consider temporal dependence but ignore the spatial correlations among parking lots for parking prediction. This is mainly due to the lack of direct physical connections or observable interactions between them. Thus, how to quantify the spatial correlation remains a significant challenge. To bridge the gap, in this study, we propose a spatial-aware parking prediction framework, which includes two steps, i.e. spatial connection graph construction and spatio-temporal forecasting. A case study in Ningbo, China is conducted using parking data of over one million records before and during COVID-19. The results show that the approach is superior on parking occupancy forecasting than baseline methods, especially for the cases with high temporal irregularity such as during COVID-19. Our work has revealed the impact of the pandemic on parking behaviour and also accentuated the importance of modelling spatial dependence in parking behaviour forecasting, which can benefit future studies on epidemiology and human travel behaviours.
The onset of the Coronavirus disease 2019 (COVID-19) pandemic instigated a global infodemic that has brought unprecedented challenges for society as a whole. During this time, a number of manual fact-checking initiatives have emerged to alleviate the spread of dis/mis-information. This study is about COVID-19 debunks published in multiple languages by different fact-checking organisations, sometimes as far as several months apart, despite the fact that the claim has already been fact-checked before. The spatiotemporal analysis reveals that similar or nearly duplicate false COVID-19 narratives have been spreading in multifarious modalities on various social media platforms in different countries. We also find that misinformation involving general medical advice has spread across multiple countries and hence has the highest proportion of false COVID-19 narratives that keep being debunked. Furthermore, as manual fact-checking is an onerous task in itself, therefore debunking similar claims recurrently is leading to a waste of resources. To this end, we propound the idea of the inclusion of multilingual debunk search in the fact-checking pipeline.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا