Do you want to publish a course? Click here

Ariel Planetary Interiors White Paper

83   0   0.0 ( 0 )
 Added by Ravit Helled
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The recently adopted Ariel ESA mission will measure the atmospheric composition of a large number of exoplanets. This information will then be used to better constrain planetary bulk compositions. While the connection between the composition of a planetary atmosphere and the bulk interior is still being investigated, the combination of the atmospheric composition with the measured mass and radius of exoplanets will push the field of exoplanet characterisation to the next level, and provide new insights of the nature of planets in our galaxy. In this white paper, we outline the ongoing activities of the interior working group of the {it Ariel} mission, and list the desirable theoretical developments as well as the challenges in linking planetary atmospheres, bulk composition and interior structure.

rate research

Read More

Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESAs Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution.
Whether it is fluorescence emission from asteroids and moons, solar wind charge exchange from comets, exospheric escape from Mars, pion reactions on Venus, sprite lighting on Saturn, or the Io plasma torus in the Jovian magnetosphere, the Solar System is surprisingly rich and diverse in X-ray emitting objects. The compositions of diverse planetary bodies are of fundamental interest to planetary science, providing clues to the formation and evolutionary history of the target bodies and the solar system as a whole. X-ray fluorescence (XRF) lines, triggered either by solar X-rays or energetic ions, are intrinsic to atomic energy levels and carry an unambiguous signature of the elemental composition of the emitting bodies. All remote-sensing XRF spectrometers used so far on planetary orbiters have been collimated instruments, with limited achievable spatial resolution, and many have used archaic X-ray detectors with poor energy resolution. Focusing X-ray optics provide true spectroscopic imaging and are used widely in astrophysics missions, but until now their mass and volume have been too large for resource-limited in-situ planetary missions. Recent advances in X-ray instrumentation such as the Micro-Pore Optics used on the BepiColombo X-ray instrument (Fraser et al., 2010), Miniature X-ray Optics (Hong et al., 2016) and highly radiation tolerant CMOS X-ray sensors (e.g., Kenter et al., 2012) enable compact, yet powerful, truly focusing X-ray Imaging Spectrometers. Such instruments will enable compositional measurements of planetary bodies with much better spatial resolution and thus open a large new discovery space in planetary science, greatly enhancing our understanding of the nature and origin of diverse planetary bodies. Here, we discuss many examples of the power of XRF to address key science questions across the solar system.
The WGLA of the AAS (http://www.aas.org/labastro/) promotes collaboration and exchange of knowledge between astronomy and planetary sciences and the laboratory sciences (physics, chemistry, and biology). Laboratory data needs of ongoing and next generation planetary science missions are carefully evaluated and recommended in this white paper submitted by the WGLA to Planetary Decadal Survey.
MAAT is proposed as a visitor mirror-slicer optical system that will allow the OSIRIS spectrograph on the 10.4-m Gran telescopio CANARIAS (GTC) the capability to perform Integral Field Spectroscopy (IFS) over a seeing-limited FoV 14.20x10 with a slice width of 0.303. MAAT@GTC will enhance the resolution power of OSIRIS by 1.6 times as compared to its 0.6 wide long-slit. All the eleven OSIRIS grisms and volume-phase holographic gratings will be available to provide broad spectral coverage with moderate resolution (R=600 up to 4100) in the 3600 - 10000 {AA} wavelength range. MAAT unique observing capabilities will broaden its use to the needs of the GTC community to unveil the nature of most striking phenomena in the universe well beyond time-domain astronomy. The GTC equipped with OSIRIS+MAAT will also play a fundamental role in synergy with other facilities, some of them operating on the northern ORM at La Palma. This White Paper presents the different aspects of MAAT@GTC - including scientific and technical specifications, outstanding science cases, and an outline of the instrument concept.
Astrophotonics is the application of versatile photonic technologies to channel, manipulate, and disperse guided light from one or more telescopes to achieve scientific objectives in astronomy in an efficient and cost-effective way. The developments and demands from the telecommunication industry have driven a major boost in photonic technology and vice versa in the last 40 years. The photonic platform of guided light in fibers and waveguides has opened the doors to next-generation instrumentation for both ground- and space-based telescopes in optical and near/mid-IR bands, particularly for the upcoming extremely large telescopes (ELTs). The large telescopes are pushing the limits of adaptive optics to reach close to a near-diffraction-limited performance. The photonic devices are ideally suited for capturing this AO-corrected light and enabling new and exciting science such as characterizing exoplanet atmospheres. The purpose of this white paper is to summarize the current landscape of astrophotonic devices and their scientific impact, highlight the key issues, and outline specific technological and organizational approaches to address these issues in the coming decade and thereby enable new discoveries as we embark on the era of extremely large telescopes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا