Do you want to publish a course? Click here

White Paper on MAAT@GTC

57   0   0.0 ( 0 )
 Added by Enrique Perez
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

MAAT is proposed as a visitor mirror-slicer optical system that will allow the OSIRIS spectrograph on the 10.4-m Gran telescopio CANARIAS (GTC) the capability to perform Integral Field Spectroscopy (IFS) over a seeing-limited FoV 14.20x10 with a slice width of 0.303. MAAT@GTC will enhance the resolution power of OSIRIS by 1.6 times as compared to its 0.6 wide long-slit. All the eleven OSIRIS grisms and volume-phase holographic gratings will be available to provide broad spectral coverage with moderate resolution (R=600 up to 4100) in the 3600 - 10000 {AA} wavelength range. MAAT unique observing capabilities will broaden its use to the needs of the GTC community to unveil the nature of most striking phenomena in the universe well beyond time-domain astronomy. The GTC equipped with OSIRIS+MAAT will also play a fundamental role in synergy with other facilities, some of them operating on the northern ORM at La Palma. This White Paper presents the different aspects of MAAT@GTC - including scientific and technical specifications, outstanding science cases, and an outline of the instrument concept.



rate research

Read More

The Advanced Telescope for High ENergy Astrophysics (Athena) is the X-ray observatory mission selected by ESA within its Cosmic Vision 2015-2025 programme to address the Hot and Energetic Universe scientific theme. The ESO-Athena Synergy Team (EAST) has been tasked to single out the potential scientific synergies between Athena and optical/near-infrared (NIR) and sub/mm ground based facilities, in particular those of ESO (i.e., the VLT and ELT, ALMA and APEX), by producing a White Paper to identify and develop the: 1. needs to access ESO ground-based facilities to achieve the formulated Athena science objectives; 2. needs to access Athena to achieve the formulated science objectives of ESO facilities contemporary to Athena; 3. science areas where the synergetic use of Athena and ESO facilities in the late 2020s will result in scientific added value. Community input to the process happened primarily via a dedicated ESO - Athena Synergy Workshop that took place on Sept. 14 - 16, 2016 at ESO, Garching. This White Paper presents the results of the EASTs work, sorted by synergy area, and deals with the following topics: 1. the Hot Universe: Early groups and clusters and their evolution, Physics of the Intracluster medium, Missing baryons in cosmic filaments; 2. the Energetic Universe: Supermassive black hole (SMBH) history, SMBH accretion disks, Active Galactic Nuclei feedback - Molecular outflows, Ultra-fast outflows, Accretion Physics, Transient Science; 3. Observatory Science: Star Formation, Stars. It then discusses the optical-NIR-sub-mm perspective by providing details on VLT/MOONS, the E-ELT instruments, in particular the MOS, VISTA/4MOST, the ESO and ALMA archives, future ALMA and ESO developments, and finally the (likely) ESO - Athena astronomical scene in the 2020s. (abridged)
We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.
The Advanced Telescope for High Energy Astrophysics (Athena) is the X-ray observatory large mission selected by the European Space Agency (ESA), within its Cosmic Vision 2015-2025 programme, to address the Hot and Energetic Universe scientific theme (Nandra et al. 2013), and it is provisionally due for launch in the early 2030s. The Square Kilometer Array (SKA) is the next generation radio observatory and consists of two telescopes, one comprised of dishes operating at mid frequencies (SKA1-MID) and located in South Africa, and the other comprised of Log-Periodic antennas operating at low radio frequencies (SKA1-LOW), which will be located in Australia (Braun et al. 2017). The scientific commissioning of the radio telescope is planned to begin in 2021-2022. The SKA-Athena Synergy Team (SAST) has been tasked to single out the potential scientific synergies between Athena and SKA. The astrophysical community was involved in this exercise primarily through a dedicated SKA-Athena Synergy Workshop, which took place on April 24-25, 2017 at SKAO, Jodrell Bank, Manchester. The final result of the synergy exercise, this White Paper, describes in detail a number of scientific opportunities that will be opened up by the combination of Athena and SKA, these include: 1. the Cosmic Dawn; 2. the Evolution of black holes and galaxies; 3. Active galaxy feedback in galaxy clusters; 4. Non-thermal phenomena in galaxy clusters; 5. Detecting the cosmic web; 6. Black-hole accretion physics and astrophysical transients; 7. Galactic astronomy: stars, planets, pulsars and supernovae.
We propose an experiment, the Cosmic Accelerometer, designed to yield velocity precision of $leq 1$ cm/s with measurement stability over years to decades. The first-phase Cosmic Accelerometer, which is at the scale of the Astro2020 Small programs, will be ideal for precision radial velocity measurements of terrestrial exoplanets in the Habitable Zone of Sun-like stars. At the same time, this experiment will serve as the technical pathfinder and facility core for a second-phase larger facility at the Medium scale, which can provide a significant detection of cosmological redshift drift on a 6-year timescale. This larger facility will naturally provide further detection/study of Earth twin planet systems as part of its external calibration process. This experiment is fundamentally enabled by a novel low-cost telescope technology called PolyOculus, which harnesses recent advances in commercial off the shelf equipment (telescopes, CCD cameras, and control computers) combined with a novel optical architecture to produce telescope collecting areas equivalent to standard telescopes with large mirror diameters. Combining a PolyOculus array with an actively-stabilized high-precision radial velocity spectrograph provides a unique facility with novel calibration features to achieve the performance requirements for the Cosmic Accelerometer.
99 - F. Malbet 2019
Sky survey telescopes and powerful targeted telescopes play complementary roles in astronomy. In order to investigate the nature and characteristics of the motions of very faint objects, a flexibly-pointed instrument capable of high astrometric accuracy is an ideal complement to current astrometric surveys and a unique tool for precision astrophysics. Such a space-based mission will push the frontier of precision astrometry from evidence of earth-massed habitable worlds around the nearest starts, and also into distant Milky way objects up to the Local Group of galaxies. As we enter the era of the James Webb Space Telescope and the new ground-based, adaptive-optics-enabled giant telescopes, by obtaining these high precision measurements on key objects that Gaia could not reach, a mission that focuses on high precision astrometry science can consolidate our theoretical understanding of the local universe, enable extrapolation of physical processes to remote redshifts, and derive a much more consistent picture of cosmological evolution and the likely fate of our cosmos. Already several missions have been proposed to address the science case of faint objects in motion using high precision astrometry ESA missions: NEAT for M3, micro-NEAT for S1 mission, and Theia for M4 and M5. Additional new mission configurations adapted with technological innovations could be envisioned to pursue accurate measurements of these extremely small motions. The goal of this white paper is to address the fundamental science questions that are at stake when we focus on the motions of faint sky objects and to briefly review quickly instrumentation and mission profiles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا