No Arabic abstract
Using machine learning in clinical practice poses hard requirements on explainability, reliability, replicability and robustness of these systems. Therefore, developing reliable software for monitoring critically ill patients requires close collaboration between physicians and software engineers. However, these two different disciplines need to find own research perspectives in order to contribute to both the medical and the software engineering domain. In this paper, we address the problem of how to establish a collaboration where software engineering and medicine meets to design robust machine learning systems to be used in patient care. We describe how we designed software systems for monitoring patients under carotid endarterectomy, in particular focusing on the process of knowledge building in the research team. Our results show what to consider when setting up such a collaboration, how it develops over time and what kind of systems can be constructed based on it. We conclude that the main challenge is to find a good research team, where different competences are committed to a common goal.
Representative sampling appears rare in empirical software engineering research. Not all studies need representative samples, but a general lack of representative sampling undermines a scientific field. This article therefore reports a systematic review of the state of sampling in recent, high-quality software engineering research. The key findings are: (1) random sampling is rare; (2) sophisticated sampling strategies are very rare; (3) sampling, representativeness and randomness often appear misunderstood. These findings suggest that textit{software engineering research has a generalizability crisis}. To address these problems, this paper synthesizes existing knowledge of sampling into a succinct primer and proposes extensive guidelines for improving the conduct, presentation and evaluation of sampling in software engineering research. It is further recommended that while researchers should strive for more representative samples, disparaging non-probability sampling is generally capricious and particularly misguided for predominately qualitative research.
Federated learning is an emerging machine learning paradigm where clients train models locally and formulate a global model based on the local model updates. To identify the state-of-the-art in federated learning and explore how to develop federated learning systems, we perform a systematic literature review from a software engineering perspective, based on 231 primary studies. Our data synthesis covers the lifecycle of federated learning system development that includes background understanding, requirement analysis, architecture design, implementation, and evaluation. We highlight and summarise the findings from the results, and identify future trends to encourage researchers to advance their current work.
Deep learning (DL) techniques have gained significant popularity among software engineering (SE) researchers in recent years. This is because they can often solve many SE challenges without enormous manual feature engineering effort and complex domain knowledge. Although many DL studies have reported substantial advantages over other state-of-the-art models on effectiveness, they often ignore two factors: (1) replicability - whether the reported experimental result can be approximately reproduced in high probability with the same DL model and the same data; and (2) reproducibility - whether one reported experimental findings can be reproduced by new experiments with the same experimental protocol and DL model, but different sampled real-world data. Unlike traditional machine learning (ML) models, DL studies commonly overlook these two factors and declare them as minor threats or leave them for future work. This is mainly due to high model complexity with many manually set parameters and the time-consuming optimization process. In this study, we conducted a literature review on 93 DL studies recently published in twenty SE journals or conferences. Our statistics show the urgency of investigating these two factors in SE. Moreover, we re-ran four representative DL models in SE. Experimental results show the importance of replicability and reproducibility, where the reported performance of a DL model could not be replicated for an unstable optimization process. Reproducibility could be substantially compromised if the model training is not convergent, or if performance is sensitive to the size of vocabulary and testing data. It is therefore urgent for the SE community to provide a long-lasting link to a replication package, enhance DL-based solution stability and convergence, and avoid performance sensitivity on different sampled data.
In 2006, Geoffrey Hinton proposed the concept of training Deep Neural Networks (DNNs) and an improved model training method to break the bottleneck of neural network development. More recently, the introduction of AlphaGo in 2016 demonstrated the powerful learning ability of deep learning and its enormous potential. Deep learning has been increasingly used to develop state-of-the-art software engineering (SE) research tools due to its ability to boost performance for various SE tasks. There are many factors, e.g., deep learning model selection, internal structure differences, and model optimization techniques, that may have an impact on the performance of DNNs applied in SE. Few works to date focus on summarizing, classifying, and analyzing the application of deep learning techniques in SE. To fill this gap, we performed a survey to analyse the relevant studies published since 2006. We first provide an example to illustrate how deep learning techniques are used in SE. We then summarize and classify different deep learning techniques used in SE. We analyzed key optimization technologies used in these deep learning models, and finally describe a range of key research topics using DNNs in SE. Based on our findings, we present a set of current challenges remaining to be investigated and outline a proposed research road map highlighting key opportunities for future work.
Given the current transformative potential of research that sits at the intersection of Deep Learning (DL) and Software Engineering (SE), an NSF-sponsored community workshop was conducted in co-location with the 34th IEEE/ACM International Conference on Automated Software Engineering (ASE19) in San Diego, California. The goal of this workshop was to outline high priority areas for cross-cutting research. While a multitude of exciting directions for future work were identified, this report provides a general summary of the research areas representing the areas of highest priority which were discussed at the workshop. The intent of this report is to serve as a potential roadmap to guide future work that sits at the intersection of SE & DL.