Do you want to publish a course? Click here

On the Replicability and Reproducibility of Deep Learning in Software Engineering

87   0   0.0 ( 0 )
 Added by Chao Liu Dr.
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Deep learning (DL) techniques have gained significant popularity among software engineering (SE) researchers in recent years. This is because they can often solve many SE challenges without enormous manual feature engineering effort and complex domain knowledge. Although many DL studies have reported substantial advantages over other state-of-the-art models on effectiveness, they often ignore two factors: (1) replicability - whether the reported experimental result can be approximately reproduced in high probability with the same DL model and the same data; and (2) reproducibility - whether one reported experimental findings can be reproduced by new experiments with the same experimental protocol and DL model, but different sampled real-world data. Unlike traditional machine learning (ML) models, DL studies commonly overlook these two factors and declare them as minor threats or leave them for future work. This is mainly due to high model complexity with many manually set parameters and the time-consuming optimization process. In this study, we conducted a literature review on 93 DL studies recently published in twenty SE journals or conferences. Our statistics show the urgency of investigating these two factors in SE. Moreover, we re-ran four representative DL models in SE. Experimental results show the importance of replicability and reproducibility, where the reported performance of a DL model could not be replicated for an unstable optimization process. Reproducibility could be substantially compromised if the model training is not convergent, or if performance is sensitive to the size of vocabulary and testing data. It is therefore urgent for the SE community to provide a long-lasting link to a replication package, enhance DL-based solution stability and convergence, and avoid performance sensitivity on different sampled data.



rate research

Read More

Machine learning (ML) has been widely used in the literature to automate software engineering tasks. However, ML outcomes may be sensitive to randomization in data sampling mechanisms and learning procedures. To understand whether and how researchers in SE address these threats, we surveyed 45 recent papers related to three predictive tasks: defect prediction (DP), predictive mutation testing (PMT), and code smell detection (CSD). We found that less than 50% of the surveyed papers address the threats related to randomized data sampling (via multiple repetitions); only 8% of the papers address the random nature of ML; and parameter values are rarely reported (only 18% of the papers). To assess the severity of these threats, we conducted an empirical study using 26 real-world datasets commonly considered for the three predictive tasks of interest, considering eight common supervised ML classifiers. We show that different data resamplings for 10-fold cross-validation lead to extreme variability in observed performance results. Furthermore, randomized ML methods also show non-negligible variability for different choices of random seeds. More worryingly, performance and variability are inconsistent for different implementations of the conceptually same ML method in different libraries, as also shown through multi-dataset pairwise comparison. To cope with these critical threats, we provide practical guidelines on how to validate, assess, and report the results of predictive methods.
120 - Yanming Yang , Xin Xia , David Lo 2020
In 2006, Geoffrey Hinton proposed the concept of training Deep Neural Networks (DNNs) and an improved model training method to break the bottleneck of neural network development. More recently, the introduction of AlphaGo in 2016 demonstrated the powerful learning ability of deep learning and its enormous potential. Deep learning has been increasingly used to develop state-of-the-art software engineering (SE) research tools due to its ability to boost performance for various SE tasks. There are many factors, e.g., deep learning model selection, internal structure differences, and model optimization techniques, that may have an impact on the performance of DNNs applied in SE. Few works to date focus on summarizing, classifying, and analyzing the application of deep learning techniques in SE. To fill this gap, we performed a survey to analyse the relevant studies published since 2006. We first provide an example to illustrate how deep learning techniques are used in SE. We then summarize and classify different deep learning techniques used in SE. We analyzed key optimization technologies used in these deep learning models, and finally describe a range of key research topics using DNNs in SE. Based on our findings, we present a set of current challenges remaining to be investigated and outline a proposed research road map highlighting key opportunities for future work.
Given the current transformative potential of research that sits at the intersection of Deep Learning (DL) and Software Engineering (SE), an NSF-sponsored community workshop was conducted in co-location with the 34th IEEE/ACM International Conference on Automated Software Engineering (ASE19) in San Diego, California. The goal of this workshop was to outline high priority areas for cross-cutting research. While a multitude of exciting directions for future work were identified, this report provides a general summary of the research areas representing the areas of highest priority which were discussed at the workshop. The intent of this report is to serve as a potential roadmap to guide future work that sits at the intersection of SE & DL.
An increasingly popular set of techniques adopted by software engineering (SE) researchers to automate development tasks are those rooted in the concept of Deep Learning (DL). The popularity of such techniques largely stems from their automated feature engineering capabilities, which aid in modeling software artifacts. However, due to the rapid pace at which DL techniques have been adopted, it is difficult to distill the current successes, failures, and opportunities of the current research landscape. In an effort to bring clarity to this cross-cutting area of work, from its modern inception to the present, this paper presents a systematic literature review of research at the intersection of SE & DL. The review canvases work appearing in the most prominent SE and DL conferences and journals and spans 84 papers across 22 unique SE tasks. We center our analysis around the components of learning, a set of principles that govern the application of machine learning techniques (ML) to a given problem domain, discussing several aspects of the surveyed work at a granular level. The end result of our analysis is a research roadmap that both delineates the foundations of DL techniques applied to SE research, and likely areas of fertile exploration for the future.
114 - Xiyue Zhang , Xiaofei Xie , Lei Ma 2020
Over the past decade, deep learning (DL) has been successfully applied to many industrial domain-specific tasks. However, the current state-of-the-art DL software still suffers from quality issues, which raises great concern especially in the context of safety- and security-critical scenarios. Adversarial examples (AEs) represent a typical and important type of defects needed to be urgently addressed, on which a DL software makes incorrect decisions. Such defects occur through either intentional attack or physical-world noise perceived by input sensors, potentially hindering further industry deployment. The intrinsic uncertainty nature of deep learning decisions can be a fundamental reason for its incorrect behavior. Although some testing, adversarial attack and defense techniques have been recently proposed, it still lacks a systematic study to uncover the relationship between AEs and DL uncertainty. In this paper, we conduct a large-scale study towards bridging this gap. We first investigate the capability of multiple uncertainty metrics in differentiating benign examples (BEs) and AEs, which enables to characterize the uncertainty patterns of input data. Then, we identify and categorize the uncertainty patterns of BEs and AEs, and find that while BEs and AEs generated by existing methods do follow common uncertainty patterns, some other uncertainty patterns are largely missed. Based on this, we propose an automated testing technique to generate multiple types of uncommon AEs and BEs that are largely missed by existing techniques. Our further evaluation reveals that the uncommon data generated by our method is hard to be defended by the existing defense techniques with the average defense success rate reduced by 35%. Our results call for attention and necessity to generate more diverse data for evaluating quality assurance solutions of DL software.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا