No Arabic abstract
We propose a new concept of two-dimensional (2D) Dirac semiconductor which is characterized by the emergence of fourfold degenerate band crossings near the band edge and provide a generic approach to realize this novel semiconductor in the community of material science. Based on the first-principle calculations and symmetry analysis, we discover recently synthesised triple-layer (TL)-BiOS2 is such Dirac semiconductor that features Dirac cone at X/Y point, protected by nonsymmorphic symmetry. Due to sandwich-like structure, each Dirac fermion in TL-BiOS2 can be regarded as a combination of two Weyl fermions with opposite chiralities, degenerate in momentum-energy space but separated in real space. Such Dirac semiconductor carries layer-dependent helical spin textures that never been reported before. Moreover, novel topological phase transitions are flexibly achieved in TL-BiOS2: (i) an vertical electric field can drive it into Weyl semiconductor with switchable spin polarization direction, (ii) an extensive strain is able to generate ferroelectric polarization and actuate it into Weyl nodal ring around X point and into another type of four-fold degenerate point at Y point. Our work extends the Dirac fermion into semiconductor systems and provides a promising avenue to integrate spintronics and optoelectronics in topological materials.
Recent synthesis of monolayer borophene (triangle boron monolayer) on the substrate opens the era of boron nanosheet (Science, 350, 1513, $mathbf{2015}$), but the structural stability and novel physical properties are still open issues. Here we demonstrated borophene can be stabilized with fully surface hydrogenation, called as borophane, from first-principles calculations. Most interesting, it shows that borophane has direction-dependent Dirac cones, which are mainly contributed by in-plane emph{p$_{x}$} and emph{p$_{y}$} orbitals of boron atoms. The Dirac fermions possess an ultrahigh Fermi velocity up to 3.0$times$10$^{6}$ m/s, 4 times higher than that of graphene. The Youngs modules are calculated to be 129 and 200 GPa$cdot$nm along two different directions, which is comparable with steel. The ultrahigh Fermi velocity and high mechanical feature render borophane ideal for nanoelectronics applications.
Recently, a new type of two-dimensional layered material, i.e. C3N, has been fabricated by polymerization of 2,3-diaminophenazine and used to fabricate a field-effect transistor device with an on/off current ratio reaching 5.5E10 (Adv. Mater. 2017, 1605625). Here we have performed a comprehensive first-principles study mechanical and electronic properties of C3N and related derivatives. Ab inito molecular dynamics simulation shows that C3N monolayer can withstand high temperature up to 2000K. Besides high stability, C3N is predicted to be a superior stiff material with high Youngs modulus (1090.0 GPa), which is comparable or even higher than that of graphene (1057.7 GPa). By roll-up C3N nanosheet into the corresponding nanotube, an out-of-plane bending deformation is also investigated. The calculation indicates C3N nanosheet possesses a fascinating bending Poissons effect, namely, bending induced lateral contraction. Further investigation shows that most of the corresponding nanotubes also present high Youngs modulus and semiconducting properties. In addition, the electronic properties of few-layer C3N nanosheet is also investigated. It is predicated that C3N monolayer is an indirect semiconductor (1.09 eV) with strongly polar covalent bonds, while the multi-layered C3N possesses metallic properties with AD-stacking. Due to high stability, suitable band gap and superior mechanical strength, the C3N nanosheet will be an ideal candidate in high-strength nano-electronic device applications.
Exploring new two-dimensional (2D) van der Waals (vdW) systems is at the forefront of materials physics. Here, through molecular beam epitaxy on graphene-covered SiC(0001), we report successful growth of AlSb in the double-layer honeycomb (DLHC) structure, a 2D vdW material which has no direct analogue to its 3D bulk and is predicted kinetically stable when freestanding. The structural morphology and electronic structure of the experimental 2D AlSb are characterized with spectroscopic imaging scanning tunneling microscopy and cross-sectional imaging scanning transmission electron microscopy, which compare well to the proposed DLHC structure. The 2D AlSb exhibits a bandgap of 0.93 eV versus the predicted 1.06 eV, which is substantially smaller than the 1.6 eV of bulk. We also attempt the less-stable InSb DLHC structure; however, it grows into bulk islands instead. The successful growth of a DLHC material here opens the door for the realization of a large family of novel 2D DLHC traditional semiconductors with unique excitonic, topological, and electronic properties.
Nodal loops in two-dimensional (2D) systems are typically vulnerable against spin-orbit coupling (SOC). Here, we explore 2D systems with a type of doubly degenerate nodal loops that are robust under SOC and feature an hourglass type dispersion. We present symmetry conditions for realizing such hourglass Weyl loops, which involve nonsymmorphic lattice symmetries. Depending on the symmetry, the loops may exhibit different patterns in the Brillouin zone. Based on first-principles calculations, we identify the monolayer GaTeI-family materials as a realistic material platform to realize such loops. These materials host a single hourglass Weyl loop circling around a high-symmetry point. Interestingly, there is also a spin-orbit Dirac point enabled by an additional screw axis. We show that the hourglass Weyl loop and the Dirac point are robust under a variety of applied strains. By breaking the screw axis, the Dirac point can be transformed into a second Weyl loop. Furthermore, by breaking the glide mirror, the hourglass Weyl loop and the spin-orbit Dirac point can both be transformed into a pair of spin-orbit Weyl points. Our work offers guidance and realistic material candidates for exploring fascinating physics of several novel 2D emergent fermions.
The structural and electronic properties of germanene coated Ge$_2$Pt clusters have been determined by scanning tunneling microscopy and spectroscopy at room temperature. The interior of the germanene sheet exhibits a buckled honeycomb structure with a lattice constant of 4.3 AA and a buckling of 0.2 AA. The zigzag edges of germanene are reconstructed and display a 4$times$ periodicity. The differential conductivity of the interior of the germanene sheet has a V-shape, which is reminiscent of the density of states of a two-dimensional Dirac system. The minimum of the differential conductivity is located close to the Fermi level and has a non-zero value, which we ascribe to the metallic character of the underlying Ge$_2$Pt substrate. Near the reconstructed germanene zigzag edges the shape of the differential conductivity changes from a V-shape to a more parabolic-like shape, revealing that the reconstructed germanene zigzag edges do not exhibit a pronounced metallic edge state.