Do you want to publish a course? Click here

Towards a volumetric census of close white dwarf binaries I.Reference samples

57   0   0.0 ( 0 )
 Added by Keith Inight
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Close white dwarf binaries play an important role across a range of astrophysics, including thermonuclear supernovae, the Galactic low-frequency gravitational wave signal, and the chemical evolution of the Galaxy. Progress in developing a detailed understanding of the complex, multi-threaded evolutionary pathways of these systems is limited by the lack of statistically sound observational constraints on the relative fractions of various sub-populations, and their physical properties. The available samples are small, heterogeneous, and subject to a multitude of observational biases. Our overarching goal is to establish a volume-limited sample of all types of white dwarf binaries that is representative of the underlying population as well as sufficiently large to serve as a benchmark for future binary population models. In this first paper, we provide an overview of the project, and assemble reference samples within a distance limit of 300,pc of known white dwarf binaries spanning the most common sub-classes: post-common envelope binaries containing a white dwarf plus a main sequence star, cataclysmic variables and double-degenerate binaries. We carefully vet the members of these Gold Samples, which span most of the evolutionary parameter space of close white dwarf binary evolution. We also explore the differences between magnitude and volume limited close white dwarf binary samples, and discuss how these systems evolve in their observational properties across the Gaia Hertzsprung-Russell diagram.



rate research

Read More

Interacting binaries containing white dwarfs can lead to a variety of outcomes that range from powerful thermonuclear explosions, which are important in the chemical evolution of galaxies and as cosmological distance estimators, to strong sources of low frequency gravitational wave radiation, which makes them ideal calibrators for the gravitational low-frequency wave detector LISA mission. However, current theoretical evolution models still fail to explain the observed properties of the known populations of white dwarfs in both interacting and detached binaries. Major limitations are that the existing population models have generally been developed to explain the properties of sub-samples of these systems, occupying small volumes of the vast parameter space, and that the observed samples are severely biased. The overarching goal for the next decade is to assemble a large and homogeneous sample of white dwarf binaries that spans the entire range of evolutionary states, to obtain precise measurements of their physical properties, and to further develop the theory to satisfactorily reproduce the properties of the entire population. While ongoing and future all-sky high- and low-resolution optical spectroscopic surveys allow us to enlarge the sample of these systems, high-resolution ultraviolet spectroscopy is absolutely essential for the characterization of the white dwarfs in these binaries. The Hubble Space Telescope is currently the only facility that provides ultraviolet spectroscopy, and with its foreseeable demise, planning the next ultraviolet mission is of utmost urgency.
We determine the orbits of four double degenerate systems (DDs), composed of two white dwarfs, and of two white dwarf -- M dwarf binaries. The four DDs, WD1022+050, WD1428+373, WD1824+040, and WD2032+188, show orbital periods of 1.157155(5) d, 1.15674(2) d, 6.26602(6) d and 5.0846(3) d respectively. These periods combined with estimates for the masses of the brighter component, based on their effective temperatures, allow us to constrain the masses of the unseen companions. We estimate that the upper limit for the contribution of the unseen companions to the total luminosity in the four DDs ranges between 10 and 20 per cent. In the case of the two white dwarf - M dwarf binaries, WD1042-690 and WD2009+622, we calculate the orbital parameters by fitting simultaneously the absorption line from the white dwarf and the emission core from the M-dwarf. Their orbital periods are 0.337083(1) d and 0.741226(2) d respectively. We find signatures of irradiation on the inner face of WD2009+622s companion. We calculate the masses of both components from the gravitational redshift and the mass-radius relationship for white dwarfs and find masses of 0.75 -- 0.78 Msun and 0.61 -- 0.64 Msun for WD1042-690 and WD2009+622 respectively. This indicates that the stars probably reached the asymptotic giant branch in their evolution before entering a common envelope phase. These two white dwarf - M dwarf binaries will become cataclysmic variables, although not within a Hubble time, with orbital periods below the period gap.
Constraints from surveys of post common envelope binaries (PCEBs) consisting of a white dwarf plus an M-dwarf companion have led to significant progress in our understanding of the formation of close white dwarf binary stars with low-mass companions. The white dwarf binary pathways project aims at extending these previous surveys to larger secondary masses, i.e. secondary stars of spectral type AFGK. Here we present the discovery and observational characterization of three PCEBs with G-type secondary stars and orbital periods between 1.2 and 2.5 days. Using our own tools as well as MESA we estimate the evolutionary history of the binary stars and predict their future. We find a large range of possible evolutionary histories for all three systems and identify no indications for differences in common envelope evolution compared to PCEBs with lower mass secondary stars. Despite their similarities in orbital period and secondary spectral type, we estimate that the future of the three systems are very different: TYC 4962-1205-1 is a progenitor of a cataclysmic variable system with an evolved donor star, TYC 4700-815-1 will run into dynamically unstable mass transfer that will cause the two stars to merge, and TYC 1380-957-1 may appear as super soft source before becoming a rather typical cataclysmic variable star.
Close white dwarf binaries consisting of a white dwarf and an A, F, G or K type main sequence star, henceforth close WD+AFGK binaries, are ideal systems to understand the nature of type Ia supernovae progenitors and to test binary evolution models. In this work we identify 775 WD+AFGK candidates from TGAS (The Tycho-Gaia Astrometric Solution) and Gaia Data Release 2 (DR2), a well-defined sample of stars with available parallaxes, and we measure radial velocities (RVs) for 275 of them with the aim of identifying close binaries. The RVs have been measured from high resolution spectra obtained at the Xinglong 2.16m Telescope and the San Pedro Martir 2.12m Telescope and/or from available LAMOST DR6 (low-resolution) and RAVE DR5 (medium-resolution) spectra. We identify 23 WD+AFGK systems displaying more than 3$sigma$ RV variation among 151 systems for which the measured values are obtained from different nights. Our WD+AFGK binary sample contains both AFGK dwarfs and giants, with a giant fraction $sim$43%. The close binary fractions we determine for the WD+AFGK dwarf and giant samples are $simeq$24% and $simeq$15%, respectively. We also determine the stellar parameters (i.e. effective temperature, surface gravity, metallicity, mass and radius) of the AFGK companions with available high resolution spectra. The stellar parameter distributions of the AFGK companions that are members of close and wide binary candidates do not show statistically significant differences.
We present a binary evolution study of cataclysmic variables (CVs) and related systems with white dwarf accretors, including for example, AM CVn systems, classical novae, supersoft X-ray sources, and systems with giant donor stars. Our approach intentionally avoids the complications associated with population synthesis algorithms thereby allowing us to present the first truly comprehensive exploration of all of the subsequent binary evolution pathways that ZACVs might follow (assuming fully non-conservative, Roche-lobe overflow onto an accreting WD) using the sophisticated binary stellar evolution code MESA. The grid consists of 56,000 initial models, including 14 white dwarf accretor masses, 43 donor-star masses ($0.1-4.7$ $M_{odot}$), and 100 orbital periods. We explore evolution tracks in the orbital period and donor-mass ($P_{rm orb}-M_{rm don}$) plane in terms of evolution dwell times, masses of the white dwarf accretor, accretion rate, and chemical composition of the center and surface of the donor star. We report on the differences among the standard CV tracks, those with giant donor stars, and ultrashort period systems. We show where in parameter space one can expect to find supersoft X-ray sources, present a diagnostic to distinguish among different evolutionary paths to forming AM CVn binaries, quantify how the minimum orbital period in CVs depends on the chemical composition of the donor star, and update the $P_{rm orb}(M_{rm wd})$ relation for binaries containing white dwarfs whose progenitors lost their envelopes via stable Roche-lobe overflow. Finally, we indicate where in the $P_{rm orb}-M_{rm don}$ the accretion disks will tend to be stable against the thermal-viscous instability, and where gravitational radiation signatures may be found with LISA.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا