No Arabic abstract
Interacting binaries containing white dwarfs can lead to a variety of outcomes that range from powerful thermonuclear explosions, which are important in the chemical evolution of galaxies and as cosmological distance estimators, to strong sources of low frequency gravitational wave radiation, which makes them ideal calibrators for the gravitational low-frequency wave detector LISA mission. However, current theoretical evolution models still fail to explain the observed properties of the known populations of white dwarfs in both interacting and detached binaries. Major limitations are that the existing population models have generally been developed to explain the properties of sub-samples of these systems, occupying small volumes of the vast parameter space, and that the observed samples are severely biased. The overarching goal for the next decade is to assemble a large and homogeneous sample of white dwarf binaries that spans the entire range of evolutionary states, to obtain precise measurements of their physical properties, and to further develop the theory to satisfactorily reproduce the properties of the entire population. While ongoing and future all-sky high- and low-resolution optical spectroscopic surveys allow us to enlarge the sample of these systems, high-resolution ultraviolet spectroscopy is absolutely essential for the characterization of the white dwarfs in these binaries. The Hubble Space Telescope is currently the only facility that provides ultraviolet spectroscopy, and with its foreseeable demise, planning the next ultraviolet mission is of utmost urgency.
Galactic binaries with orbital periods less than $approx$1 hr are strong gravitational wave sources in the mHz regime, ideal for the Laser Interferometer Space Antenna (LISA). In fact, theory predicts that emph{LISA} will resolve tens of thousands of Galactic binaries individually with a large fraction being bright enough for electromagnetic observations. This opens up a new window where we can study a statistical sample of compact Galactic binaries in both, the electromagnetic as well the gravitational wavebands. Using multi-messenger observations we can measure tidal effects in detached double WD systems, which strongly impact the outcome of WD mergers. For accreting WDs as well as NS binaries, multi-messenger observations give us the possibility to study the angular momentum transport due to mass transfer. In this white paper we present an overview of the opportunities for research on Galactic binaries using multi-messenger observations and summarize some recommendations for the 2020 time-frame.
Nearby dwarf galaxies are local analogues of high-redshift and metal-poor stellar populations. Most of these systems ceased star formation long ago, but they retain signatures of their past that can be unraveled by detailed study of their resolved stars. Archaeological examination of dwarf galaxies with resolved stellar spectroscopy provides key insights into the first stars and galaxies, galaxy formation in the smallest dark matter halos, stellar populations in the metal-free and metal-poor universe, the nature of the first stellar explosions, and the origin of the elements. Extremely large telescopes with multi-object R=5,000-30,000 spectroscopy are needed to enable such studies for galaxies of different luminosities throughout the Local Group.
Black holes in binary star systems are vital for understanding the process of pr oducing gravitational wave sources, understanding how supernovae work, and for p roviding fossil evidence for the high mass stars from earlier in the Universe. At the present time, sample sizes of these objects, and especially of black hole s in binaries, are quite limited. Furthermore, more precise measurements of the binary parameters are needed, as well. With improvements primarily in X-ray an d radio astronomy capabilities, it should be possible to build much larger sampl es of much better measured black hole binaries.
High resolution spectroscopy of the lowest-mass stars and brown dwarfs reveals their origins, multiplicity, compositions and physical properties, with implications for the star formation and chemical evolution history of the Milky Way. We motivate the need for high-resolution, infrared spectroscopic surveys to reach these faint sources.
Models of the chemical evolution of the interstellar medium, galaxies, and the Universe rely on our understanding of the amounts and chemical composition of the material returned by stars and supernovae. Stellar yields are obtained from stellar-evolution models, which currently lack predictive prescriptions of stellar mass loss, although it significantly affects stellar lifetimes, nucleosynthesis, and chemical ejecta. Galaxy properties are derived from observations of the integrated light of bright member stars. Stars in the late stages of their evolution are among the infrared-brightest objects in galaxies. An unrealistic treatment of the mass-loss process introduces significant uncertainties in galaxy properties derived from their integrated light. We describe current efforts and future needs and opportunities to characterize AGB outflows: driving mechanisms, outflow rates, underlying fundamental physical and chemical processes such as dust grain formation, and dependency of these on metallicity.